首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MySQL索引背后的数据结构及算法原理,学习C语言的你知道吗?

摘要

本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。

文章主要内容分为三个部分。

第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础。

第二部分结合MySQL数据库中MyISAM和InnoDB数据存储引擎中索引的架构实现讨论聚集索引、非聚集索引及覆盖索引等话题。

第三部分根据上面的理论基础,讨论MySQL中高性能使用索引的策略。

数据结构及算法基础

索引的本质

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。

我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。

看一个例子:

图1展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。

虽然这是一个货真价实的索引,但是实际的数据库系统几乎没有使用二叉查找树或其进化品种红黑树(red-black tree)实现的,原因会在下文介绍。

B-Tree和B+Tree

目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从数据结构角度描述它们。

B-Tree

为了描述B-Tree,首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:

1. d为大于1的一个正整数,称为B-Tree的度。

2. h为一个正整数,称为B-Tree的高度。

3. 每个非叶子节点由n-1个key和n个指针组成,其中d

4. 每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null 。

5. 所有叶节点具有相同的深度,等于树高h。

6. key和指针互相间隔,节点两端是指针。

7. 一个节点中的key从左到右非递减排列。

8. 所有节点组成树结构。

9. 每个指针要么为null,要么指向另外一个节点。

10. 如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。

11. 如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。

12. 如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。

关于怎么快速学C/C++游戏编程,有什么方法,这个问题,想必大家都已经心中有数了,打算深入了解这个行业的朋友,可以加下小编的C/C++游戏编程学习裙:四五三 + 二四三 + 二八零,不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2018最新的C/C++资料和0基础入门教程,欢迎初学和进阶中的小伙伴。

MySQL索引实现

在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式。

MyISAM索引实现

MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:

图8

这里设表一共有三列,假设我们以Col1为主键,则图8是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:

图9

同样也是一颗B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分。

InnoDB索引实现

虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。

第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

后记

这篇文章断断续续写了半个月,主要内容就是上面这些了。不可否认,这篇文章在一定程度上有纸上谈兵之嫌,因为我本人对MySQL的使用属于菜鸟级别,更没有太多数据库调优的经验,在这里大谈数据库索引调优有点大言不惭。就当是我个人的一篇学习笔记了。

其实数据库索引调优是一项技术活,不能仅仅靠理论,因为实际情况千变万化,而且MySQL本身存在很复杂的机制,如查询优化策略和各种引擎的实现差异等都会使情况变得更加复杂。但同时这些理论是索引调优的基础,只有在明白理论的基础上,才能对调优策略进行合理推断并了解其背后的机制,然后结合实践中不断的实验和摸索,从而真正达到高效使用MySQL索引的目的。

另外,MySQL索引及其优化涵盖范围非常广,本文只是涉及到其中一部分。如与排序(ORDER BY)相关的索引优化及覆盖索引(Covering index)的话题本文并未涉及,同时除B-Tree索引外MySQL还根据不同引擎支持的哈希索引、全文索引等等本文也并未涉及。如果有机会,希望再对本文未涉及的部分进行补充吧。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180720A1P7QK00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券