近日,《自然—神经科学》在线发表的一项研究显示,运用一种新型深度学习算法追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。
准确追踪行为发生期间的身体运动部位是运动科学的一项重要内容。但是,如果采用视频记录方式追踪运动,研究人员要么需要费时费力地标记每一帧,要么需要在研究对象身体的预定点上放置标记物。标记物可能会干扰研究目标的行为,而且一般只适合有限类型的运动。
图片来源:自然出版集团
美国马萨诸塞州哈佛大学的 Mackenzie Mathis、Matthias Bethge 及同事利用机器学习开发了一款开源运动追踪工具——DeepLabCut,它不受以上限制。研究人员先采用一个大型目标识别图像数据库对 DeepLabCut 进行了预训练。
之后,DeepLabCut 只需要接受小规模的人类标记图像 (约 200 张) 训练,即可完成一项新的追踪任务,从而方便神经科学家研究动物行为。他们演示了这种算法如何在无需标记物的情况下,追踪小鼠和苍蝇在各种行为期间的任意身体部位运动,而且准确度可达到人工水平。DeepLabCut 可以追踪精细的动作,如果蝇产卵以及小鼠伸爪时每一个指的轨迹。
在一篇文章中,中国北京大学的魏坤琳与美国宾夕法尼亚大学的 Konrad Kording 表示,DeepLabCut 在理论上适用于任何视频,为运动科学打开了巨大的数据来源。他们预计未来运动捕捉将从实验室内的一项艰难而又耗资不菲的任务变成一件每个人在日常生活中就能完成的“小事情”。
文章来源:中国科学报
免责声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
领取专属 10元无门槛券
私享最新 技术干货