首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

3 个用于数据科学的顶级 Python库

使用这些库把 Python 变成一个科学数据分析和建模工具。

-- Dr.michael J.garbade

致谢

编译自 |

https://opensource.com/article/18/9/top-3-python-libraries-data-science

作者 | Dr.michael J.garbade

译者 | Lv Feng (ucasFL) 共计翻译:72.0篇 贡献时间:736 天

使用这些库把 Python 变成一个科学数据分析和建模工具。

Python 的许多特性,比如开发效率、代码可读性、速度等使之成为了数据科学爱好者的首选编程语言。对于想要升级应用程序功能的数据科学家和机器学习专家来说,Python 通常是最好的选择(比如,Andrey Bulezyuk 使用 Python 语言创造了一个优秀的机器学习应用程序

[1]

)。

由于 Python 的广泛使用,因此它拥有大量的库,使得数据科学家能够很容易地完成复杂的任务,而且不会遇到许多编码困难。下面列出 3 个用于数据科学的顶级 Python 库。如果你想在数据科学这一领域开始你的职业生涯,就去了解一下它们吧。

NumPy

NumPy

[2]

(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具。NumPy 是在 BSD 许可证的许可下开源的,它是在科学计算中执行任务的基础 Python 库。SciPy 是一个更大的基于 Python 生态系统的开源工具,而 NumPy 是 SciPy 非常重要的一部分。

NumPy 为 Python 提供了大量数据结构,从而能够轻松地执行多维数组和矩阵运算。除了用于求解线性代数方程和其它数学计算之外,NumPy 还可以用做不同类型通用数据的多维容器。

此外,NumPy 还可以和其他编程语言无缝集成,比如 C/C++ 和 Fortran。NumPy 的多功能性使得它可以简单而快速地与大量数据库和工具结合。比如,让我们来看一下如何使用 NumPy(缩写成 )来实现两个矩阵的乘法运算。

我们首先导入 NumPy 库(在这些例子中,我将使用 Jupyter notebook):

接下来,使用 函数来生成指定维数的单位矩阵:

输出如下:

让我们生成另一个 3x3 矩阵。

我们使用 函数来排列数字。注意,函数中的第一个参数是需要列出的初始数字,而后一个数字不包含在生成的结果中。

另外,使用 函数把原始生成的矩阵的维度改成我们需要的维度。为了使两个矩阵“可乘”,它们需要有相同的维度。

输出如下:

接下来,使用 函数将两个矩阵相乘。

相乘后的输出如下:

太好了!

我们成功使用 NumPy 完成了两个矩阵的相乘,而不是使用普通冗长vanilla的 Python 代码。

下面是这个例子的完整代码:

Pandas

Pandas

[3]

是另一个可以提高你的 Python 数据科学技能的优秀库。就和 NumPy 一样,它属于 SciPy 开源软件家族,可以在 BSD 自由许可证许可下使用。

Pandas 提供了多能而强大的工具,用于管理数据结构和执行大量数据分析。该库能够很好的处理不完整、非结构化和无序的真实世界数据,并且提供了用于整形、聚合、分析和可视化数据集的工具

Pandas 中有三种类型的数据结构:

◈ Series:一维、相同数据类型的数组

◈ DataFrame:二维异型矩阵

◈ Panel:三维大小可变数组

例如,我们来看一下如何使用 Panda 库(缩写成 )来执行一些描述性统计计算。

首先导入该库:

然后,创建一个序列series字典:

接下来,再创建一个数据框DataFrame:

输出是一个非常规整的表:

下面是这个例子的完整代码:

Matplotlib

Matplotlib

[4]

也是 Scipy 核心包的一部分,并且在 BSD 许可证下可用。它是一个非常流行的科学库,用于实现简单而强大的可视化。你可以使用这个 Python 数据科学框架来生成曲线图、柱状图、直方图以及各种不同形状的图表,并且不用担心需要写很多行的代码。例如,我们来看一下如何使用 Matplotlib 库来生成一个简单的柱状图。

首先导入该库:

然后生成 x 轴和 y 轴的数值:

接下来,调用函数来绘制柱状图:

最后,显示图表:

柱状图如下:

下面是这个例子的完整代码:

总结

Python 编程语言非常擅长数据处理和准备,但是在科学数据分析和建模方面就没有那么优秀了。幸好有这些用于数据科学

[5]

的顶级 Python 框架填补了这一空缺,从而你能够进行复杂的数学计算以及创建复杂模型,进而让数据变得更有意义。

你还知道其它的 Python 数据挖掘库吗?你的使用经验是什么样的?请在下面的评论中和我们分享。

via:https://opensource.com/article/18/9/top-3-python-libraries-data-science

作者:Dr.Michael J.Garbade

[7]

选题:lujun9972译者:ucasFL校对:wxy

本文由LCTT原创编译,Linux中国荣誉推出

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181005B0AECG00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券