说说GIL
Process and Thread Test
利用共享库来扩展
C系扩展
Go扩展
运行在其他编译器上
说说GIL
Code:
尽管Python完全支持多线程编程, 但是解释器的C语言实现部分在完全并行执行时并不是线程安全的,所以这时候才引入了GIL
解释器被一个全局解释器锁保护着,它确保任何时候都只有一个Python线程执行(保证C实现部分能线程安全) GIL最大的问题就是Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行)
注意:GIL只会影响到那些严重依赖CPU的程序(比如计算型的)如果你的程序大部分只会涉及到I/O,比如网络交互,那么使用多线程就很合适~ 因为它们大部分时间都在等待(线程被限制到同一时刻只允许一个线程执行这样一个执行模型。GIL会根据执行的字节码行数和时间片来释放GIL,在遇到IO操作的时候会主动释放权限给其他线程)
所以Python的线程更适用于处理 和其他需要并发执行的阻塞操作,而不是需要多处理器并行的计算密集型任务(对于IO操作来说,多进程和多线程性能差别不大)【计算密集现在可以用Python的 框架】
网上摘取一段关于 的说明:(IO密集型可以结合异步)
Process and Thread Test
其实用不用多进程看你需求,不要麻木使用,Linux下还好点,Win下进程开销就有点大了(好在服务器基本上都是Linux,程序员开发环境也大多Linux了)这边只是简单测了个启动时间差距就来了,其他的都不用测试了
测试Code:
运行时间:
操作系统几千个进程开销还是有点大的(毕竟进程是有上线的)
测试Code:
运行时间:
里面的Process上面也说过了,就是在线程基础上加点东西使得用起来和 的 编程风格基本一致(本质还是线程)
测试Code:
运行时间:
其实Redis就是使用单线程和多进程的经典,它的性能有目共睹。所谓性能无非看个人能否充分发挥罢了。不然就算给你轰炸机你也不会开啊?扎心不老铁~
PS:线程和进程各有其好处,无需一棍打死,具体啥好处可以回顾之前写的进程和线程篇~
3.利用共享库来扩展C系扩展
GIL是Python解释器设计的历史遗留问题,多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生。Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。计算密集型任务要真正利用多核,除非重写一个不带GIL的解释器( )如果一定要通过多线程利用多核,可以通过C扩展来实现(Python很多模块都是用C系列写的,所以用C扩展也就不那么奇怪了)
只要用C系列写个简单功能(不需要深入研究高并发),然后使用 导入使用就行了:
编译成共享库:
使用Python运行指定方法:( )
看看这时候HTOP的信息:(充分利用多核)【ctypes在调用C时会自动释放GIL】
Go扩展
利用Go写个死循环,然后编译成so动态链接库(共享库):
非常重要的事情: 一定要写,不然就被自动改成其他名字(我当时被坑过)
Python调用和上面一样:
效果:
题外话~如果想等CPython的GIL消失可以先看一个例子:MySQL把大锁改成各个小锁花了5年。在是在MySQL有专门的团队和公司前提下,而Python完全靠社区重构就太慢了
速度方面微软除外,更新快本来是好事,但是动不动断层更新,这学习成本就太大了(这也是为什么Net能深入的人比较少的原因:人家刚深入一个,你就淘汰一个了...)
可能还有人不清楚,贴下官方推荐技术吧( 、 、 、 、 )
课外拓展:
4.运行在其他编译器上
先看最重要的一点,一旦运行在其他编译器意味着很多Python第三方库 就不能用了,相对来说 兼容性是最好的了
如果是 系列我推荐谷歌的grumpy
如果是 系列,可以使用等等
PyPy:https://bitbucket.org/pypy/pypy
Net方向:
Java方向:
Other:
:平时基本上多线程就够用了,如果想多核利用-多进程基本上就搞定了(分布式走起)实在不行一般都是分析一下性能瓶颈在哪,然后写个扩展库
如果需要和其他平台交互才考虑上面说的这些项目。如果是Web项目就更不用担心了,现在哪个公司还不是混用? 。基本上上点规模的公司都会用到Python,之前都是 搭配使用,这几年开始慢慢变成 搭配使用了~
下集预估: and
领取专属 10元无门槛券
私享最新 技术干货