互联网中不可缺少的一部分——神经网络
相对于人工智能的方法,神经网络算得上一个真正的进步,因为它的架构建立在真正的神经系统之上,尽管根基尚浅。与计算机程序员不同,神经网络的研究人员的兴趣在于了解,如果将一群神经元聚在一起,它们会表现出何种行为。大脑由神经元组成,因此构成了一个神经网络,这是铁一样的事实。联结主义者们希望通过研究神经元之间的相互作用,弄清智能那难以捉摸的特性;他们还希望通过复制神经元群之间的连接,解决那些令人工智能一筹莫展的问题。神经网络与计算机的不同之处在于,它没有CPU,也不需要中央存储。整个网络中的知识和记忆都分散在它的连接上——就像真正的大脑一样。
从表面上看,神经网络似乎非常符合我的兴趣。但很快我对这一领域的希望就又幻灭了。那时,我已经形成了一个自己的看法:对于大脑的理解,有3个标准是必不可少的。第一个标准是,对于大脑功能的理解,必须考虑时间因素。真正的大脑始终在处理快速变化的信息流。在进出大脑的信息流中,没有什么是静止不动的。第二个标准是,反馈的重要性。神经解剖学家一早就发现,大脑中充满了反馈连接。比如说,在新大脑皮层和丘脑之间连接的神经回路中,反馈连接的数目要比前馈连接多出将近10倍!也就是说,对于每一束向大脑皮层传递信息的神经纤维,都对应着10束向感觉器官传递信息的神经纤维。大脑皮层中的神经连接也绝大多数具有反馈功能。
虽然反馈的确切作用尚无人知晓,但从已发表的研究报告中可以看出,它无处不在。据此我认为,反馈一定非常重要。第三个标准是,任何理论或有关大脑的模型,都应该能够解释大脑的物理结构。新皮层并不是一个简单的构造,大家在后面的章节中将会看到,它有着不断重复的层级结构。任何不同于这一构造的神经网络,必定无法像大脑一样工作。然而,神经网络刚一亮相,就定位于一些极为简单的模型上。这些模型对于上述三个标准无一满足。绝大多数神经网络都是由相互连接的三排神经元组成的。第一排神经元接受某种模式,接着这些输入神经元同下一排神经元相连,我们称这些为“隐藏单元”。
“隐藏单元”再与最后一排神经元相连。神经元之间的连接强度有强有弱,按照连接强弱的不同,一个神经元的活动可能会促进另一个神经元的活动,也可能会减弱第三个神经元的活动。神经网络就是通过改变这种连接强度,来学习如何将输入模式映射到输出模式上。这些简单的神经网络只能用来处理静态模式,不涉及反馈,同大脑也没有任何相似之处。有一种最常见的神经网络,被称为“反向传播”网络,它能将一个错误从输出单元向输入单元传播来进行学习。你可能会认为这是反馈的一个形式,而事实上它不是。这种对错误的反向传送只发生在学习阶段。当神经网络经过训练,工作状态正常时,信息便只会向一个方向传送。
在输出到输入的方向上,并无反馈发生。除此之外,这些模型中没有时间:一个静态输入模式被转化为一个静态的输出模式,紧接着又出现另一个输入模式。在这些网络中,哪怕对于刚刚发生的事情也不留存任何历史记录。最后,与大脑的复杂性及其层级结构相比,神经网络的构造显得太小儿科了。大众媒体对神经网络与智能之间的差别也不甚明白。报纸、杂志和电视科学节目将神经网络介绍为“像大脑一样”或是“以大脑工作原理为蓝本”。与处处需要编程的人工智能不同,神经网络通过事例进行学习,这让它多少看起来更智能一些。NetTalk即为其中的一个突出代表,它能够学着将字母顺序同读音一一匹配。
由于这个神经网络是用印刷文本来训练的,因此它乍听起来就是用计算机的声音在朗读单词。不难想象,用不了多久,神经网络就可以同人类对话了。在全国新闻中,NetTalk被错误地介绍为一种能够学习阅读的机器。它虽然是神经网络的一个精彩展示,但所做的事情仍微不足道。它不会阅读,不能理解,且没有什么实用价值。它所做的只是将字母组合同预定的声音模式相匹配。欢迎大家点赞评论及分享,慕白会继续给大家带来更精彩的文章~
领取专属 10元无门槛券
私享最新 技术干货