首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

推荐:仅需六步,从零实现机器学习算法!

选自Data Optimal;机器之心编译;参与:李诗萌、路

本文以感知器为例,介绍了从零实现机器学习方法的具体步骤以及重要性。

从头开始写机器学习算法能够获得很多经验。当你最终完成时,你会惊喜万分,而且你明白这背后究竟发生了什么。

有些算法比较复杂,我们不从简单的算法开始,而是要从非常简单的算法开始,比如单层感知器。

本文以感知器为例,通过以下 6 个步骤引导你从头开始写算法:

对算法有基本的了解

找到不同的学习资源

将算法分解成块

从简单的例子开始

用可信的实现进行验证

写下你的过程

基本了解

不了解基础知识,就无法从头开始处理算法。至少,你要能回答下列问题:

它是什么?

它一般用在什么地方?

什么时候不能用它?

就感知器而言,这些问题的答案如下:

单层感知器是最基础的神经网络,一般用于二分类问题(1 或 0,「是」或「否」)。

它可以应用在一些简单的地方,比如情感分析(积极反应或消极反应)、贷款违约预测(「会违约」,「不会违约」)。在这两种情况中,决策边界都是线性的。

当决策边界是非线性的时候不能使用感知器,要用不同的方法。

借助不同的学习资源

在对模型有了基本了解之后,就可以开始研究了。有人用教科书学得更好,而有人用视频学得更好。就我而言,我喜欢到处转转,用各种各样的资源学习。

如果是学数学细节的话,书的效果很好(参见:https://www.dataoptimal.com/data-science-books-2018/),但对于更实际的例子,我更推荐博客和 YouTube 视频。

以下列举了一些关于感知器不错的资源:

《统计学习基础》(The Elements of Statistical Learning),第 4.5.1 节(https://web.stanford.edu/~hastie/Papers/ESLII.pdf)

《深入理解机器学习:从原理到算法》,第 21.4 节(https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf)

博客

Jason Brownlee 写的《如何用 Python 从零开始实现感知器算法》(https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/)

Sebastian Raschka 写的《单层神经网络和梯度下降》(https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html)

视频

感知器训练(https://www.youtube.com/watch?v=5g0TPrxKK6o)

感知器算法的工作原理(https://www.youtube.com/watch?v=1XkjVl-j8MM)

将算法分解成块

现在我们已经收集好了资料,是时候开始学习了。与其从头读一个章节或者一篇博客,不如先浏览章节标题和其他重要信息。写下要点,并试着概述算法。

在看过这些资料之后,我将感知器分成下列 5 个模块:

初始化权重

将输入和权重相乘之后再求和

比较上述结果和阈值,计算输出(1 或 0)

更新权重

重复

接下来我们详细叙述每一个模块的内容。

1. 初始化权重

首先,我们要初始化权重向量。

权重数量要和特征数量相同。假设我们有三个特征,权重向量如下图所示。权重向量一般会初始化为 0,此例中将一直采用该初始化值。

2. 输入和权重相乘再求和

接下来,我们就要将输入和权重相乘,再对其求和。为了更易于理解,我给第一行中的权重及其对应特征涂上了颜色。

在我们将特征和权重相乘之后,对乘积求和。一般将其称为点积。

最终结果是 0,此时用「f」表示这个暂时的结果。

3. 和阈值比较

计算出点积后,我们要将它和阈值进行比较。我将阈值定为 0,你可以用这个阈值,也可以试一下其他值。

由于之前计算出的点积「f」为 0,不比阈值 0 大,因此估计值也等于 0。

将估计值标记为「y hat」,y hat 的下标 0 对应的是第一行。当然你也可以用 1 表示第一行,这无关紧要,我选择从 0 开始。

如果将这个结果和真值比较的话,可以看出我们当前的权重没有正确地预测出真实的输出。

由于我们的预测错了,因此要更新权重,这就要进行下一步了。

4. 更新权重

我们要用到下面的等式:

基本思想是在迭代「n」时调整当前权重,这样我们将在下一次迭代「n+1」时得到新权重。

为了调整权重,我们需要设定「学习率」,用希腊字母「eta(η)」标记。我将学习率设为 0.1,当然就像阈值一样,你也可以用不同的数值。

目前本教程主要介绍了:

现在我们要继续计算迭代 n=2 时的新权重了。

我们成功完成了感知器算法的第一次迭代。

5. 重复

由于我们的算法没能计算出正确的输出,因此还要继续。

一般需要进行大量的迭代。遍历数据集中的每一行,每一次迭代都要更新权重。一般将完整遍历一次数据集称为一个「epoch」。

我们的数据集有 3 行,因此如果要完成 1 个 epoch 需要经历 3 次迭代。我们也可以设置迭代总数或 epoch 数来执行算法,比如指定 30 次迭代(或 10 个 epoch)。与阈值和学习率一样,epoch 也是可以随意使用的参数。

在下一次迭代中,我们将使用第二行特征。

此处不再重复计算过程,下图给出了下一个点积的计算:

接着就可以比较该点积和阈值来计算新的估计值、更新权重,然后再继续。如果我们的数据是线性可分的,那么感知器最终将会收敛。

从简单的例子开始

我们已经将算法分解成块了,接下来就可以开始用代码实现它了。

简单起见,我一般会以非常小的「玩具数据集」开始。对这类问题而言,有一个很好的小型线性可分数据集,它就是与非门(NAND gate)。这是数字电路中一种常见的逻辑门。

由于这个数据集很小,我们可以手动将其输入到 Python 中。我添加了一列值为 1 的虚拟特征(dummy feature)「x0」,这样模型就可以计算偏置项了。你可以将偏置项视为可以促使模型正确分类的截距项。

以下是输入数据的代码:

与前面的章节一样,我将逐步完成算法、编写代码并对其进行测试。

1. 初始化权重

第一步是初始化权重。

注意权重向量的长度要和特征长度相匹配。以 NAND 门为例,它的长度是 3。

2. 将权重和输入相乘并对其求和

我们可以用 Numpy 轻松执行该运算,要用的方法是 .dot()。

从权重向量和第一行特征的点积开始。

如我们所料,结果是 0。为了与前面的笔记保持连贯性,设点积为变量「f」。

3. 与阈值相比较

为了与前文保持连贯,将阈值「z」设为 0。若点积「f」大于 0,则预测值为 1,否则,预测值为 0。将预测值设为变量 yhat。

正如我们所料,预测值是 0。

你可能注意到了在上文代码的注释中,这一步被称为「激活函数」。这是对这部分内容的更正式的描述。

从 NAND 输出的第一行可以看到实际值是 1。由于预测值是错的,因此需要继续更新权重。

4. 更新权重

现在已经做出了预测,我们准备更新权重。

要像前文那样设置学习率。为与前文保持一致,将学习率 η 的值设为 0.1。为了便于阅读,我将对每次权重的更新进行硬编码。

权重更新完成。

5. 重复

现在我们完成了每一个步骤,接下来就可以把它们组合在一起了。

我们尚未讨论的最后一步是损失函数,我们需要将其最小化,它在本例中是误差项平方和。

我们要用它来计算误差,然后看模型的性能。

把它们都放在一起,就是完整的函数:

现在已经编写了完整的感知器代码,接着是运行代码:

我们可以看到,第 6 次迭代时误差趋近于 0,且在剩余迭代中误差一直是 0。当误差趋近于 0 并保持为 0 时,模型就收敛了。这告诉我们模型已经正确「学习」了适当的权重。

下一部分,我们将用计算好的权重在更大的数据集上进行预测。

用可信的实现进行验证

到目前为止,我们已经找到了不同的学习资源、手动完成了算法,并用简单的例子测试了算法。

现在要用可信的实现和我们的模型进行比较了。我们使用的是 scikit-learn 中的感知器(http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html)。

我们将按照以下几步进行比较:

导入数据

将数据分割为训练集和测试集

训练感知器

测试感知器

和 scikit-learn 感知器进行比较

1. 导入数据

首先导入数据。你可以在这里(https://github.com/dataoptimal/posts/blob/master/algorithms from scratch/dataset.csv)得到数据集的副本。这是我创建的线性可分数据集,确保感知器可以起作用。为了确认,我们还将数据绘制成图。

从图中很容易看出来,我们可以用一条直线将数据分开。

text

在继续之前,我先解释一下绘图的代码。我用 Pandas 导入 csv,它可以自动将数据放入 DataFrame 中。为了绘制数据,我要将值从 DataFrame 中取出来,因此我用了 .values 方法。特征在第一列和第二列,因此我在散点图函数中用了这些特征。第 0 列是值为 1 的虚拟特征,这样就能计算截距。这与上一节中的 NAND 门操作相似。最后,在散点图函数中令 c = df['3'], alpha = 0.8 为两个类着色。输出是第三列数据(0 或 1),所以我告诉函数用列「3」给这两个类着色。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181117A1KBEF00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券