有没有遇到过一种情况,电脑里的资料越来越多,硬盘却不够储存了。文件、相片、游戏、电影、音乐、动漫等等。随着使用时间久了,硬盘读取速度也越来越慢了,甚至造成卡顿现象,是不是想换硬盘了?不久将来,宅男迷妹白领码农,都再也不用担心硬盘不够用!
当然,发现数据应该压缩后再进行传输和存储,是更早之前的事情。从19世纪的摩斯电码时代人类就已经发现了,很多数据中的无效部分是可以被归类和省略的,从而可以换取更快的传输速度和更少的存储空间。类似道理的压缩技术很早就应用在计算机世界,在大型机当道的时候其价值已经被证明。但真正压缩开始流行,还是在互联网飞黄腾达之后。
关于无损压缩的新时代,开始在八十年代末。这个时候,随着互联网开始腾飞,各种商业压缩软件已经成熟,但还缺少能独大的那一家。
当时流行的压缩软件叫做Arc,后来一个名叫Phil Katz的年轻人突发奇想之下,希望能够做个更好的版本。于是,这个之后被称为互联网天才和第一代极客的大牛做了名字充满挑衅意味的PKArc。结果1988年,Phil Katz被告侵犯商标和知识产权。于是第二年他又做了新的修改版,用了新的IMPLODE算法,也就是我们今天无比熟悉的ZIP。直至今天,ZIP依然统治了压缩世界的话语规范。
在相当长的一段时间里,压缩都被认为是无需再进行改善的东西。但随着新终端、新的存储方式到来,人类又一次对压缩提出了新的要求。但在移动互联网和云计算的加持下,人类正在以几何增长的速度制造新数据,这些数据可能很快就会没有地方存储。既然大家都不想删除文件,那么只能寄希望于文件变小一点了。最终这个任务,很可能还是要落在人工智能的头上。
2016年,谷歌相关团队推出了一款叫做RAISR(Rapid and Accurate Image Super-ResoluTIon)的图像压缩技术。这个解决方案就是以人工智能技术作为压缩路径,效果能达到将图片压缩到源文件的1/4, 却基本不改变图片的清晰度。能达到这种效果的诀窍,在于给机器学习输入大量的图片压缩数据。让智能体去学习图片压缩的模式,从而创建符合每个图片要求的滤波器。由此产生的压缩后图片只是被忽略了数据细节,却保留了能够让人眼识别的部分。
在极大程度压缩文件的同时,这种技术还能提升文件压缩速度。主要用来提供移动端的图像传输和浏览效率,让用户获得更好的图片观看体验。谷歌发布的AI+压缩技术应用在图片领域,而一些新的方案,正在把AI向通用压缩领域扩张。
在一篇斯坦福大学相关团队最近发布的论文中,阐释了一种被称为DeepZip的压缩方式。顾名思义,这种技术将深度学习和压缩融合在了一起,希望利用AI技术获得更好的压缩体验。这篇论文里,研究者阐释了利用RNN,即循环神经网络技术进行文件压缩的方式。所谓RNN,是一种深度学习中的经典神经网络技术。形象一点解释,这种神经网络框架就好比让一个人拥有了一定的知识基础再去学习下一个知识,往复循环形成对长期记忆的理解能力。
总而言之,不同的AI技术正在尝试从前所未有的角度撬开无损压缩的大门,希望能像搞出一个质变来。
那么到底为什么一定要有更好的压缩方式呢?或者说即使有了这种技术,是不是真正能改变世界呢?这要从到底哪些方向需要压缩的技术变革来看。但最有可能的需求,是来自于那些新技术风口。
比如VR、无人驾驶的高精地图、基因图谱数据,以及深度学习所使用的训练数据集,这些文件都比我们日常接触的互联网数据大上很多。随着VR、无人驾驶、人工智能这些东西一步步产业化、日常化,对它们的传输、保存和使用需求也在不断扩大。而且这些都是高精度文件,对压缩的效果和质量也提出了新要求。
所以,高精度、高速率的压缩解决方案正在被热切渴望着。甚至可能成为未被重视的巨大市场。用AI压缩来满足AI的需求,可能是接下来我们会见到的常态。
领取专属 10元无门槛券
私享最新 技术干货