首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用python解NOIP竞赛题

以下为2017年全国 NOIP 提高组复赛的第1题:

怎么样,读完题是不是感觉特别懵。—— 我是谁,我在哪里?

接下来我们来慢慢解析这道让人摸不着头脑的竞赛题。

一、首先翻译一下题的意思:

l 假设,现在人民币只有两个币种,面值你定

l 对面值数字的要求是这两个数字不能有公约数(除1这个公约数外)

   例如:2和5

l 问用这两个面值的钱,不能凑齐的最大的价钱是多少

l 当然,前提是你有任意多的钱

是不是稍微要清晰一些了呢。

二、那我们接下来用python写一个程序来完成这道题:

整个过程分两步:

第一步:借助 python 找规律划范围

1 # 先找出能凑出来的金额

2 def myFunc(a, b): # 输入a,b 两个互素的面值

3 c = 1 # 从1开始找出能凑出的金额

4 while True: # 不断循环,电脑配置低的,请远离,前方危险

5 for i in range(c):

6 an01 = a * i

7 for j in range(c):

8 an02 = b * j

9 if an01 + an02 == c: # 一旦找到能凑出当前金额c的i和j,打印出来

10 # print(c, "=", a, '*', i, '+', b, '*', j)

11 print(c,end=' ')

12 c += 1 # 金额不断上涨,上不封顶

13

14

15 if __name__ == "__main__":

16 myFunc(3, 5)

结果为:

如果将面值设置为 7,5 呢

结果:

再如果换成 7,9

结果:

综上:

l 我们可以发现,不可组合的面值均集中在靠前的位置,但有多靠前,具体又在哪个位置呢?

l 我们姑且假定这个数字就在两数的乘积之内,而且事实也是这样的。大家可以多试几对数字,检验一下。

第二步:范围找到后,我们再来考虑用 python 找出范围内的不可组合的金额值:

备注:上面的程序是一个死循环,需要手动结束程序,建议不懂操作的小伙伴谨慎运行(嘿嘿,你是不是已经入坑啦!)。但下面这个程序就不一样了,小伙伴们尽管去运行吧。

1 # 找出两数乘积范围内的可组合数据

2 def myFunc(a, b):

3 c = a * b

4 my_list = [] # 创建存放所有组合出来的金额值

5

6 # 找寻过程 -- 不断对比

7 for i in range(0, c):

8 an01 = a * i

9 for j in range(c):

10 an02 = b * j

11 if an01 + an02

12 my_list.append(an01 + an02) # 将符合的金额添加进目标列表

13 return list(set(sorted(my_list))) # 返回经过去重和排序的目标列表

14

15

16 # 找到最大的那个不能组合的金额

17 def getMax(a, b):

18 my_list = myFunc(a, b) # 调用找可拼凑数据函数得到目标列表

19 my_list.sort(reverse=True) # 将目标列表反序排列

20

21 # 判断目标列表是否连续,并输出断点数中的最大值

22 y = my_list[0] + 1 # 创建对比参数

23 for x in my_list:

24 if x + 1 != y:

25 print(x, y)

26 break

27 y = x

28 return y - 1 # 返回最大断点值

29

30

31 if __name__ == "__main__":

32 print(getMax(16, 27))

结果为:

不知道大家有没有发现一个问题,这个最大不可组合数据似乎有一定的规律,规律为:

c = a * b - a - b

( 其中的a 和 b 为你输入的两个互为素数的币种面值,c为它们不能组合的金额 )

大家可以多试几组数据,验证一下。

而且我要悄悄告诉你的就是,这个公式可是一个牛哄哄的定理,名字叫:赛瓦维斯特定理

赛瓦维斯特定理:

已知a,b为大于1的正整数,(a,b)=1,则使不定方程 ax+by=c 无负整数解的最大整数c=ab−a−b

其中的 (a,b) 表示a和b的最大公约数

怎么样,通过两个程序,我们就很容易的解决了这个看起来不那么友好的竞赛题。

此时,是不是觉得 python 很酷呢!

笔者会不定时的更新一些跟python相关又和数学相关的一些有趣的程序,喜欢就关注我吧。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190125A0ERHS00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券