项目一:数据整合
称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析。这类项目包括从所有来源获得数据源(实时或批处理)并且把它们存储在hadoop中。有时,这是成为一个“数据驱动的公司”的第一步;有时,或许你仅仅需要一份漂亮的报告。“企业级数据中心”通常由HDFS文件系统和HIVE或IMPALA中的表组成。未来,HBase和Phoenix在大数据整合方面将大展拳脚,打开一个新的局面,创建出全新的数据美丽新世界。
销售人员喜欢说“读模式”,但事实上,要取得成功,你必须清楚的了解自己的用例将是什么(Hive模式不会看起来与你在企业数据仓库中所做的不一样)。许多人在做前端分析时使用Tabelu和Excel。许多复杂的公司以“数据科学家”用Zeppelin或IPython笔记本作为前端。
项目二:专业分析
许多数据整合项目实际上是从你特殊的需求和某一数据集系统的分析开始的。这些往往是令人难以置信的特定领域,如在银行领域的流动性风险/蒙特卡罗模拟分析。在过去,这种专业的分析依赖于过时的,专有的软件包,无法扩大数据的规模经常遭受一个有限的功能集(大部分是因为软件厂商不可能像专业机构那样了解的那么多)。
在Hadoop和Spark的世界,看看这些系统大致相同的数据整合系统,但往往有更多的HBase,定制非SQL代码,和更少的数据来源(如果不是唯一的)。他们越来越多地以Spark为基础。
加米谷大数据www.dtinone.com
领取专属 10元无门槛券
私享最新 技术干货