科学技术是生产力中最为活跃的因素,科学变革与技术进步在造福人类的同时也带来了一系列问题,甚至安全风险。比如当下人们关于人工智能的安全,可控,可靠和可解释性等议题就争议不断。一方面是由于AI对经济社会活动的影响日益深入,AI已经从生产环节优化逐渐进入分配环节的决策。另一方面人们要为经济增长变慢分配关系日益紧张的责任找到一个载体。
比如欧盟就在2018年5月25日正式实施了史上最严的个人数据保护条例GDPR(通用数据保护条例),而在2019年1月21日,谷歌公司就成为依据此法遭高额处罚的首家美国科技公司,被罚款5000万欧元。
尽管有这样的小插曲,但AI作为新一代技术革命,依然被认为是未来全球经济增长的重要驱动力。根据Gartner最新发布的预测报告,2022年人工智能驱动的商业价值将高达3.9万亿美元。而在当下,面对复杂多变的国际政治环境和充满斗争的环境,人工智能产业最需要解决的是:如何找到一条新航道,实现针对GDPR这样的法律法规合规的人工智能算法设计,和人工智能在数据层面的公平合作。
消除数据短缺,微众银行AI团队开辟新航道
实际上,一些具有远见的人工智能科学家以及人工智能团队和企业早已开始行动。
杨强教授在演讲中直指当前数据短缺的根本原因——“如今机器学习最薄弱的环节其实并非算法结构不够丰富、准确率不够高,而是在高质量大数据的可用性方面面临着严峻的挑战。在许多实际应用中,数据之间是相互孤立的。集成数据的工作越来越困难,其中一部分原因是对用户隐私和数据安全的严重担忧。严格的政府法规,例如GDPR的实行让许多大数据公司噤若寒蝉,不敢再互相交流数据了,这对于极度依赖数据的机器学习是一个巨大的挑战。”
对此,杨强教授透露微众银行AI正在引领业界积极寻找正向的应对方法,思考如何把 GDPR 囊括在人工智能和机器学习框架之内。其中联邦迁移学习Federated transfer learning作为重要范例,可实现在不共享各自数据的前提下,利用双方的数据实现共享模型的性能增长。
实际上,微众银行这一技术设想早已经得到业界认可。2018年12月4日,电气和电子工程师协会标准委员会(IEEE Standard Association)就批准了由微众银行发起的关于联邦学习架构和应用规范的标准P3652.1(Guide for Architectural Framework and Application of Federated Machine Learning)立项。微众银行成为工作组的召集单位,工作组主席由杨强教授担任。工作组将在联邦学习的算法框架规范,使用模式和使用规范上推动相关国际标准的制定,以帮助和指导不同类别的企业在合作过程中合法合规的共同使用数据。而作为工作组主席,杨强教授还在会上介绍了IEEE联盟标准的工作进展,引发广泛关注,反响积极热烈。
并且,在这次AAAI 2019年会上,微众银行AI团队的展台前,更是人头攒动,众多学者教授、工业专家、国内外学生都主动与微众银行现场工作人员,就微众在AI方向的成果进行探讨交流、以此加深了解,甚至寻求合作与人才引进。微众银行AI团队也被邀请在AAAI大会上做了联邦迁移学习的教程,系统讲述了联邦迁移学习的理论依据和实践案例。
不难看出,无论是杨强教授受邀在人工智能领域殿堂级的年会上进行主旨演讲,还是由电气和电子工程师协会标准委员会被批准应用规范立项,还是展台前的围观交流,都证明微众银行AI团队的技术实力和前沿研究,已经得到国际学术业界的广泛认可。
联邦学习框架的优势到底是什么?
首先需要了解何为联邦学习?实际上就是一种加密的分布式机器学习技术,参与各方可以在不披露底层数据和底层数据的加密(混淆)形态的前提下共建模型。
而联邦学习具有四大显著优势。第一是数据隔离,数据不会泄露到外部,满足用户隐私保护和数据安全的需求;第二是能够保证模型质量无损,不会出现负迁移,保证联邦模型比割裂的独立模型效果好。第三则是参与者地位对等,能够实现公平合作;最后,则是能够保证参与各方在保持独立性的情况下,进行信息与模型参数的加密交换,并同时获得成长。
领取专属 10元无门槛券
私享最新 技术干货