孟德宇,西安交通大学教授、博士生导师。目前主要聚焦于自步学习、误差建模、张量稀疏性等机器学习相关方向的研究,共接收/发表IEEE汇刊论文20篇,CCF A类会议论文30篇。曾担任ICML,NIPS等会议程序委员会委员,AAAI2016,IJCAI2017高级程序委员会委员。
导读:传统机器学习主要关注于确定性信息的建模,而在复杂场景下,机器学习方法容易出现对数据噪音的鲁棒性问题,而该鲁棒性问题与误差函数的选择紧密相关。本次报告聚焦于如何针对包含复杂噪音数据进行误差建模的鲁棒机器学习原理。这一原理已经在遥感影像、CT图像与高光谱图像的相关应用中取得良好效果,并有望引导出更多有趣的机器学习相关应用与发现。
领取专属 10元无门槛券
私享最新 技术干货