大数据技术逐渐成为互联网发展的核心,对于专业的大数据技术人才需求量也是越来越多。更多的人选择了快餐式教学——去专业的大数据学习学校学习。但哪些技术点重要呢?哪些又是大数据学习的关键呢?
杭州大数据程序员学习 哪些才是你重点要学的?
大数据学习关键在于能够完成大数据处理,而大数据处理的流程困难重重。处理过程一般来讲可以分为四步。
首先应当利用多个数据库接收来自不同的客户端的数据进行数据采集。用户通过这些数据库来进行简单的查询和处理,而在大数据采集过程中所面临的主要困难在于并发数过高,同时可能有成千上万的用户在访问或者操作,如何在数据库间完成负载均衡和分片是重难点。
第二步在于数据导入和预处理。由于数据采集涉及了多种数据库,在对这些数据进行有效的分析之前,需要将所有的数据导入集中的大型分布式数据库,然后对数据进行简单的数据清洗和预处理。这一步主要面临的问题在于导入数据量大,导入流量通常可以达到成百上千兆级别。
第三步统计和分析。利用分布式数据库将存储在其中的数据进行普通的分析及分类汇总,进行批量的处理。对于半结构化的数据还需要使用Hadoop等。而这一步主要面临的挑战是设计的分析数据量大,对系统资源占用率高,对于系统I/O挑战较大。
第四步就是数据挖掘。数据挖掘和分析过程不同,基于前三部的各种算法的计算,以达到预测的效果,从而满足更高级的数据分析需求。该过程的特点在于挖掘算法十分复杂,涉及的数据量和计算量都很吊,常用的挖掘算法都以单线程为主。
领取专属 10元无门槛券
私享最新 技术干货