首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人工智能AI(3):线性代数之向量和矩阵的范数

在实数域中,数的大小和两个数之间的距离是通过绝对值来度量的。在解析几何中,向量的大小和两个向量之差的大小是“长度”和“距离”的概念来度量的。为了对矩阵运算进行数值分析,我们需要对向量和矩阵的“大小”引进某种度量。范数是绝对值概念的自然推广。

1定义

我们都知道,函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。

但当函数与几何超出三维空间时,就难以获得较好的想象,于是就有了映射的概念,映射表达的就是一个集合通过某种关系转为另外一个集合。通常数学书是先说映射,然后再讨论函数,这是因为函数是映射的一个特例。

为了更好的在数学上表达这种映射关系,(这里特指线性关系)于是就引进了矩阵。这里的矩阵就是表征上述空间映射的线性关系。而通过向量来表示上述映射中所说的这个集合,而我们通常所说的基,就是这个集合的最一般关系。于是,我们可以这样理解,一个集合(向量),通过一种映射关系(矩阵),得到另外一个几何(另外一个向量)。

那么向量的范数,就是表示这个原有集合的大小。而矩阵的范数,就是表示这个变化过程的大小的一个度量。

向量和矩阵范数 "范数 "是对向量和矩阵的一种度量,实际上是二维和三维 向量长度概念的一种推广.

数域:数的集合,对加法和乘法封闭 (有理数、实数、复数数域)

线性空间:可简化为向量的集合,对向量的加法和数量乘 法封闭,也称为向量空间

2向量范数

向量范数 ( vector norms )

1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。

-∞-范数:,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。

P-范数:,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。

0-范数:0范数表示向量中非零元素的个数(即为其稀疏度),因其不再满足三角不等性,严格的说此时p已不算是范数了,但很多人仍然称之为L0范数。

3矩阵的范数

矩阵的范数( matrix norms )

1-范数:, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。

2-范数:,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。

∞-范数:,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。

F-范数:,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。

核范数:是A的奇异值。即奇异值之和。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20171215G03T0C00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券