首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度学习的发展历史一览

深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应用取得了巨大成功。现有的深度学习模型属于神经网络。神经网络的起源可追溯到20世纪40年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理解决各种机器学习问题。1986年,鲁梅尔哈特(Rumelhart)、欣顿(Hinton)和威廉姆斯(Williams)在《自然》杂志发表了著名的反向传播算法用于训练神经网络,该算法直到今天仍被广泛应用。

神经网络有大量参数,经常发生过拟合问题,虽然其识别结果在训练集上准确率很高,但在测试集上效果却很差。这是因为当时的训练数据集规模都较小,加之计算资源有限,即便是训练一个较小的网络也需要很长的时间。与其他模型相比,神经网络并未在识别准确率上体现出明显的优势。

因此更多的学者开始采用支持向量机、Boosting、最近邻等分类器。这些分类器可以用具有一个或两个隐含层的神经网络模拟,因此被称为浅层机器学习模型。在这种模型中,往往是针对不同的任务设计不同的系统,并采用不同的手工设计的特征。例物体识别采用尺度不变特征转换(Scale Invariant Feature Transform,SIFT),人脸识别采用局部二值模式(Local Binary Patterns, LBP),行人检测采用方向梯度直方图(Histogram of Oriented Gradient,HOG)特征。

2006年,欣顿提出了深度学习。之后深度学习在诸多领域取得了巨大成功,受到广泛关注。神经网络能够重新焕发青春的原因有几个方面:首先,大规模训练数据的出现在很大程度上缓解了训练过拟合的问题。例如,ImageNet训练集拥有上百万个有标注的图像。其次,计算机硬件的飞速发展为其提供了强大的计算能力,一个GPU芯片可以集成上千个核。这使得训练大规模神经网络成为可能。第三,神经网络的模型设计和训练方法都取得了长足的进步。例如,为了改进神经网络的训练,学者提出了非监督和逐层的预训练,使得在利用反向传播算法对网络进行全局优化之前,网络参数能达到一个好的起始点,从而在训练完成时能达到一个较好的局部极小点。

深度学习在计算机视觉领域最具影响力的突破发生在2012年,欣顿的研究小组采用深度学习赢得了ImageNet图像分类比赛的冠军。排名第2到第4位的小组采用的都是传统的计算机视觉方法、手工设计的特征,他们之间准确率的差别不超过1%。欣顿研究小组的准确率超出第二名10%以上,这个结果在计算机视觉领域产生了极大的震动,引发了深度学习的热潮。

计算机视觉领域另一个重要的挑战是人脸识别。有研究表明,如果只把不包括头发在内的人脸的中心区域给人看,人眼在户外脸部检测数据库(Labeled Faces in the Wild,LFW)上的识别率是97.53%。如果把整张图像,包括背景和头发给人看,人眼的识别率是99.15%。经典的人脸识别算法Eigenface在LFW测试集上只有60%的识别率。在非深度学习算法中,最高的识别率是96.33%。目前深度学习可以达到99.47%的识别率。

在欣顿的科研小组赢得ImageNet比赛冠军之后的6个月,谷歌和百度都发布了新的基于图像内容的搜索引擎。他们采用深度学习模型,应用在各自的数据上,发现图像搜索准确率得到了大幅度提高。百度在2012年成立了深度学习研究院,2014年5月又在美国硅谷成立了新的深度学习实验室,聘请斯坦福大学著名教授吴恩达担任首席科学家。脸谱于2013年12月在纽约成立了新的人工智能实验室,聘请深度学习领域的著名学者、卷积网络的发明人雅恩·乐昆(Yann LeCun)作为首席科学家。2014年月,谷歌抛出四亿美金收购了深度学习的创业公司DeepMind。鉴于深度学习在学术界和工业界的巨大影响力,2013年,《麻省理工科技评论》(MIT Technology Review)将其列为世界十大技术突破之首。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20200422A0GCYU00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券