CDN把距离缩短,以加快访问速度
延迟相当大一部分往往花在最后的几公里,因为客户单端连接公网的方式和接入链路都比较差
每个http连接都需要经过三次握手,从纽约向伦敦请求,启动一次TCP连接,光三次握手至少要花56ms,向伦敦发送分组需要28ms,响应要28ms。可以看出三次握手带来的延迟是非常大的
可能是往返时间超过了所有主机的最大中断间隔,于是相应的主机会产生越来越多的副本,使整个网络陷入瘫痪,最终个交换节点的缓冲区被填满,多出来的分组必须删除
通过缩放接收窗口(rwnd)的大小来控制流量的发送(可配)
通过一个动态可变的拥塞窗口(cwnd)大小来控制流量的发送,网络可发送的最大数据取rwnd和cwnd的最小值
如图可见,一个请求需要经过220ms才可以达到最大速率。因为慢启动限制了可用的吞吐量,对于小文件的传输是很不利的
慢启动重启:在连接空闲一段时间后,重置拥塞窗口到一个安全的默认值。毫无疑问,SSR对于长周期空闲而突发请求的TCP连接有很大的影响,建议服务器金庸SSR
慢启动每次往返都会成倍提高传输的数据量,知道超过接收端的流量控制窗口或者有分组丢失为止。此时拥塞预防算法接入
BDP表示数据链路的容量与其端到端延迟的乘积,结果就是任意时刻在途未确认的最大数据量
发送端和接收端发送超过了未被确认的最大数据量,都会停下来等待对方的ACK,这就造成了数据缺口。为了解决这个问题应该设置窗口足够大,过小的窗口会限制连接的吞吐量。窗口的大小最小应该设置为BDP
TCP按序交付与可靠交付,如果有时丢包,那么后续的包必须等到这个丢包的数据重发并接收,才能交付给应用程序,这就导致读数据时会感觉延迟交付
在应用程序不关系按序交付和可靠交付的情况下TCP并不是最好的选择。例如音频,丢了一个包可以在音频中插入一个小小的间隙,就可以继续处理后面的包,只要间隙足够小,用户就注意不到,而等待丢包可能导致音频输出产生无法预料的。相对而言,后者的用户体验更差.
这三段地址只允许私网拥有,不允许公网拥有这些ip
中转UDP的路由,由于UDP没有连接和终止的概念,这导致中转路由不知道什么时候该删除连接状态。为了解决这个问题,路由器会定期清理,路由状态一旦清除,UDP则需要重新建立。解决方法是定期双向发keep-alive分组。按理TCP有明确的连接状态,路由器应当可以完整把握TCP的生命周期,但是路由器没有这么做,也同样给TCP设置了超时清理的动作,这导致一个长时间不活跃的TCP,会无端端的连接断开。
STUN: Session Traversal Utilities for NAT 是一个协议,可以让内网应用程序获得一个外网ip和端口,STUN服务器架设在公网
各自内网的应用程序使用STUN后,就能获得一个外网ip,STUN服务器通过keepalive方式保持路由不超时,各应用程序就能直接UDP通讯了
TURN: Traversal Using Relays around NAT. 当内网不能使用NAT时,可以使用TURN服务器,应用程序通过TCP连接TURN服务器,服务器做消息中转
libjingle是谷歌的一个实现了STUN/TURN/ICE的开源库。 92% 的时间可以直接连接(STUN); 8% 的时间要使用中继器(TURN)。
ICE: Interactive Connectivity Establishment协议,能直连就直连,不能直连则使用STUN,再不行则使用TURN
建议使用WebRTC
TCP握手/流量拥塞控制/丢包/队首拥塞
通过Navigation Timing/User Timing/resource timing来度量
对于每个服务器的ip,客户端维持一个长连接的连接池,如果有多个请求发往服务器,并超过连接池的数量,则会迫使客户端必须等待连接池的空闲,而且启用多个socket严重占用系统资源。
每次发送http请求,都必须加上头部,而头部是没有经过压缩的,这直接导致头部的长度有可能超过body的长度。
领取专属 10元无门槛券
私享最新 技术干货