迄今为止最常见从DataFrame获取元素、行和列的数据索引方式:
Dataframe.[];此函数也称为索引运算符。
Dataframe.loc[] :此函数用于标签。
Dataframe.iloc[] :此函数用于基于位置或整数的
Dataframe.ix[] :此函数用于标号和基于整数的函数。
它们统称为索引器。而布尔索引是一种索引类型,它根据DataFrame中数据的实际值而不是它们的行/列标签或整数位置来选择数据子集。
布尔索引中使用布尔向量过滤数据,在通过四种方式过滤数据:
使用布尔索引访问DataFrame
将布尔掩码应用于数据帧
基于列值的掩蔽数据
基于索引值的掩蔽数据
使用布尔索引访问DataFrame:
创建一个dataframe,其中的dataframe索引包含一个布尔值。即“True”或“false”。例如
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict, index = [True, False, True, False])
print(df)
产出:
借助布尔索引访问数据,使用以下三个函数访问数据文件.loc[], .iloc[], .ix[]
使用布尔索引访问Dataframe.loc[]
为了访问具有布尔索引的数据,使用.loc[],我们只需将布尔值(真或假)传递给.loc[]功能。
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .loc[] function
print(df.loc[True])
产出:
使用布尔索引访问Dataframe.iloc[]
为了访问数据文件,请使用.iloc[],我们必须在iloc[]功能但iloc[]函数只接受整数作为参数,因此它将引发一个错误,因此我们只能在将整数传递给iloc[]功能
代码1:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .iloc[] function
print(df.iloc[True])
产出:
TypeError
代码2:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .iloc[] function
print(df.iloc[1])
产出:
使用布尔索引访问Dataframe.ix[]
使用.ix[]访问数据文件,.ix[]函数是.loc[]和.iloc[]功能,将布尔值(真或假)和整数值传递给.ix[]。
代码1:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .ix[] function
print(df.ix[True])
产出:
代码2:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .ix[] function
print(df.ix[1])
产出:
将布尔掩码应用于dataframe:
应用一个布尔掩码,它将只打印传递布尔值True的数据,使用__getitems__或[]访问。
用dataframe中包含的长度相同的真假列表来应用布尔掩码,
代码1:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
print(df[[True, False, True, False]])
产出:
代码2:
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12])
df[[True, False, True, False, True,
False, True, False, True, False,
True, False, True]]
产出:
基于列值的掩蔽数据:
在dataframe中,使用不同的运算符(如==, >,
代码1:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["BCA", "BCA", "M.Tech", "BCA"],
'score':[90, 40, 80, 98]}
# creating a dataframe
df = pd.DataFrame(dict)
# using a comparison operator for filtering of data
print(df['degree'] == 'BCA')
产出:
代码2:
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
# using greater than operator for filtering of data
print(data['Age'] > 25)
产出:
基于索引值的掩蔽数据:
在dataframe中,使用不同的运算符创建基于索引值的掩码 ==, >,
代码1:
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["BCA", "BCA", "M.Tech", "BCA"],
'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
mask = df.index == 0
print(df[mask])
产出:
代码2:
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
# giving a index to a dataframe
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12])
# filtering data on index value
mask = df.index > 7
df[mask]
产出:
领取专属 10元无门槛券
私享最新 技术干货