从汽车到智能手机,到数字助理,甚至包括机器人。我们不只是在讲每天层出不穷的、突破性的新功能。更重要的是,设备、计算机和机器都在聪明地执行任务。它们是如何做到的呢?通过人工智能,也就是AI。
“人工智能”一词最早由认知科学家约翰·麦卡锡在研究中提出,他写到,“这项研究基于一种推测,即任何学习行为或其它智力特征,在原则上都可以被精确地描述,从而可以制造出一台机器来模拟它。”这种描述在今天仍然适用,只是复杂性增加了一些。
你也许最近经常听到“人工智能”和另外几个词汇同时出现,特别是“机器学习”和“深度学习”。它们经常被互换使用,尽管它们存在关联,但其实并非同一事物。
这样说可能会让人感到困惑:到底什么是人工智能?什么是机器学习?什么是深度学习?
人工智能
人工智能的范围可以说很大、很泛,从表面上可以理解为机器的智能化,让机器像人一样能解决思考解决问题。其实人工智能核心技术包括很多的方面:推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。可以说机器学习和深度学习都是人工智能这个大主题下的一部分吧。简而言之,机器学习和深度学习是人工智能的两个关键的技,看人工智能的发展历史,人工智能三大研究内容:计算机模仿人类的思考,对环境的感知和动作的实现是人工智能的三大研究内容。
人工智能发展历史
机器学习
机器学习是一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。其之所以现在这么火,是因为在大数据的环境下,人们对算法和人脑结构的模拟,让机器从数据和知识中学习到有用的知识,如语音识别、图像识别等都是机器学习的结果。如美图秀秀是很多女孩子的最爱,其核心的算法就是在卷积BP神经网络来实现的。
神经网络结构
什么是神经网络?
神经网络就是模拟人脑的神经元结构,在计算机中实现对神经网的连接,现在对于人来说神经网络就像是一个黑箱子,人们还无法从连接权值中提取知识。神经网络的学习分为“有监督学习”和“无监督学习”两个部分。有监督的学习就是有输入数据和输出数据,无监督学习就是只有输入数据,让网络自己分类或者学习其规律。
深度学习
深度学习仅仅实现神经网络的层面上提到的网络的层数更多,网络的神经元个数更多的网络,就是能从深层次的挖掘数据知识。
领取专属 10元无门槛券
私享最新 技术干货