导读:词向量算法是自然语言处理领域的基础算法,在序列标注、问答系统和机器翻译等诸多任务中都发挥了重要作用。词向量算法最早由谷歌在2013年提出的word2vec,在接下来的几年里,该算法也经历不断的改进,但大多是仅适用于拉丁字符构成的单词(比如英文),结合中文语言特性的词向量研究相对较少。本文介绍了蚂蚁金服人工智能部与新加坡科技大学一项最新的合作成果:cw2vec——基于汉字笔画信息的中文词向量算法研究,用科学的方法揭示隐藏在一笔一划之间的秘密。
作者:曹绍升 陆巍 周俊 李小龙
AAAI大会(Association for the Advancement of Artificial Intelligence),是一年一度在人工智能方向的顶级会议之一,旨在汇集世界各地的人工智能理论和领域应用的最新成果。该会议固定在每年的2月份举行,由AAAI协会主办。
第32届AAAI大会-AAAI 2018将于2月2号-7号在美国新奥尔良召开,其中蚂蚁金服人工智能部和新加坡科技大学合作的一篇基于汉字笔画信息的中文词向量算法研究的论文“cw2vec: Learning Chinese Word Embeddings with Stroke n-grams”被高分录用(其中一位审稿人给出了满分,剩下两位也给出了接近满分的评价)。我们将在2月7日在大会上做口头报告(Oral),欢迎大家一起讨论交流。
转自:蚂蚁金服科技
领取专属 10元无门槛券
私享最新 技术干货