半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
目前使用最多的是硅材料半导体,还包括砷化镓、氮化镓、碳化硅等。
行业运用:
半导体的应用十分广泛,主要是制成有特殊功能的元器件,如晶体管、集成电路、整流器、激光器以及各种光电探测器件、微波器件等。
半导体芯片通常也可称为集成电路,是指在半导体片材上进行浸蚀、布线、制成的能实现某种功能的半导体器件。不只是硅芯片,常见的还包括砷化镓、氮化镓、碳化硅等半导体材料。半导体制造的过程就是“点石成金“的过程,主要是对硅晶圆的一系列处理,简单来说就是通过外延生长、光刻、刻蚀、掺杂和抛光,在硅片上形成所需要的电路,将硅片变成芯片。
化合物半导体
半导体材料是制作半导体器件和集成电路的电子材料,是半导体工业的基础。随着新的半导体材料出现、电力电子技术进步与制作工艺的提高,半导体在过去经历了三代变化。砷化镓(GaAs)和氮化镓(GaN)、碳化硅(SiC)半导体分别作为第二代和第三代半导体的代表,与diyi代半导体硅(Si)相比,在高频、高温等方面性能更加优异。
化合物半导体芯片因其优异的高频性能,常用来制造功率半导体,其应用领域越来越广泛。在应用中通过变频、变压、变流、功率放大及管理的方式实现两大功能:放大和开关。目前75%以上的电能应用需要进行功率变换以后才能供设备使用。其应用领域越来越广泛。
放大:低频功率变为高频功率,充分利用放大作用,就可以使用小功率驱动马达。
开关:切换电路的开与关,其开关速度越快,越能实现精密控制。
砷化镓半导体
砷化镓半导体芯片主要用于微波功率器件,即工作在微波波段(频率300~300000兆赫之间)的半导体器件。由于Si在物理特性上的先天限制,仅能应用在1GHz以下的频率。然而近年来由于无线高频通讯产品迅速发展,使得具备高工作频率、电子迁移速率、抗天然辐射及耗电量小等特性的砷化镓脱颖而出,在微波通讯领域大规模应用。
由于砷化镓高频传输的特性,除了在手机应用中飞速成长外,笔记本电脑、平板电脑中搭载的WiFi模组、固定网络无线传输,以及光纤通讯、卫星通讯、点对点微波通讯、有线电视、汽车导航系统、汽车防撞系统等,也分别采用1~4颗数量不等的功率放大器,这都是推动砷化镓成长的强大动力。
领取专属 10元无门槛券
私享最新 技术干货