首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

AI真能模拟人类大脑吗?

这两年, 频频有专家警示深度学习即将进入寒冬。 而同时, 一个名叫“类脑智能”的词汇火起来, 这个概念说的是一种比目前深度学习更加接近人脑的智能。 这背后的故事是, 深度学习的大佬,目前已经注意到深度学习的原创性进展面临瓶颈,甚至呼吁全部重来。为了拯救这种趋势, 模拟人脑再次成为一种希望。

如果我们认为, ”智能“ 是解决某一类复杂问题的能力,那么,这样的智能工具, 顶多是一些感官的外延, 而”感官“ 是否可以解决复杂问题呢?No。没有”理解“ 的智能, 将很快到达解决问题复杂度的上限。 缺少真正的理解,甚至连做感官有时也会捉襟见。

”语言“ 在人类的智能里享有独一无二的特殊性,而刚刚的”理解“问题, 背后的本质是目前深度学习对语言的捉襟见肘。  虽然我们可以用强大的LSTM生成诗歌(下图), 再配上注意力机制和外显记忆与人类对话, 也不代表它能理解人类的这个语言系统。目前机器对自然语言处理的能力远不及视觉。

更加糟糕的还有强化学习, 深度强化学习AlphaGo已经战胜了最强大的人类棋手。 但是强化学习却远非一种可靠的实用方法。 这里面最难的在于目前的强化学习还做不到可扩展, 也就是从一个游戏的问题扩展到真实的问题时候会十分糟糕。 一个已经学的很好的强化学习网络,可以在自己已经学到的领域所向披靡, 然而在游戏里稍微增加一点变化, 神经网络就不知所措。 我们可以想象成这是泛化能力的严重缺失,在真实世界里,这恰恰一击致命。

事实上在很长时间里,人工智能的过分依赖工科思维恰恰给它的危机埋下了伏笔,在人工数据上破记录, 并不代表我们就会在刚说的“理解”上做进步。 这更像是两个不同的进化方向。 其实, 关于智能的更深刻的理解, 早就是认知科学家,心理学家和神经科学家的核心任务。

如果我们需要让人工智能进步,就不能不研究脑科学。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20221010A044NC00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券