首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列

自编码器是_非线性_降_维_ 技术用于特征的无监督学习,它们可以学习比主成分分析效果更好的低维代码,作为降低数据维数的工具。

相关视频

异常心跳检测

如果提供了足够的类似于某种底层模式的训练数据,我们可以训练网络来学习数据中的模式。异常测试点是与典型数据模式不匹配的点。自编码器在重建这些数据时可能会有很高的错误率,这表明存在异常。

该框架用于使用深度自编码器开发异常检测演示。该数据集是心电图ECG 时间序列(查看文末了解数据获取方式),目标是确定哪些心跳是异常值。训练数据(20 个“好”心跳)和测试数据(为简单起见附加了 3 个“坏”心跳的训练数据),如下所示。每行代表一个心跳。

init()

import_file(PATH + "train.csv")

import_file(PATH + "test.csv")

探索数据集。

tra.shape

# 将框架转置,将时间序列作为一个单独的列来绘制。

plot(legend=False); # 不显示图例

在训练数据中,我们有 20 个时间序列,每个序列有 210 个数据点。请注意,所有线条都很紧凑并且形状相似。重要的是要记住,在使用自编码器进行训练时,您只想使用 VALID 数据。应删除所有异常。

现在让我们训练我们的神经网络

Estimator(

activation="Tanh",

hidden=\[50\],

)

model.train

model

我们的神经网络现在能够对 时间序列进行 _编码_。

现在我们尝试使用异常检测功能计算重建误差。这是输出层和输入层之间的均方误差。低误差意味着神经网络能够很好地对输入进行编码,这意味着是“已知”情况。高误差意味着神经网络以前没有见过该示例,因此是异常情况。

anomaly(test )

现在的问题是:哪个 test 时间序列最有可能是异常?

我们可以选择错误率最高的前 N 个

df\['Rank'\] = df\['MSE'\].rank

sorted

dfsorted\[MSE'\] > 1.

datT.plot

daT\[anindex\].plot(color='red');

带监督微调的无监督预训练

有时,未标记的数据比标记的数据多得多。在这种情况下,在未标记数据上训练自编码器模型,然后使用可用标签微调学习模型是有意义的。

结论

在本教程中,您学习了如何使用自编码器快速检测时间序列异常。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20221031A05X4S00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券