首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言EG(Engle-Granger)两步法协整检验、RESET、格兰杰因果检验、VAR模型分析CPI和PPI时间序列关系

全文链接:http://tecdat.cn/?p=31108

对此问题的研究显然具有重要的学术价值与现实意义:当PPI先行地引导着CPI的变动,则意味着上游价格对下游价格具有正向传导效应,物价可能因供给因素的冲击而上升,并由此引发“成本推动型通胀”的风险,此时,通胀治理应以“供给调控”为主;反之,当CPI引导着PPI的变动,则意味着存在下游价格对上游价格的反向倒逼机制,物价可能因需求因素的冲击而上升,并由此引发“需求拉动型通胀”的风险,此时的通胀治理则应以“需求调控”为主。

相关视频

我们围绕因果关系检验技术进行一些咨询,帮助客户解决独特的业务问题。

数据:CPI与PPI 月度同比数据

读取数据

CPI数据

1、  单位根检验

查看数据后发现需要进行季节调整

给出输出结果:

PPI数据

(1)若存在单位根,用差分后序列进行2、3、4 步;

(2)若不存在单位根,就用原序列。

因此,对两个数据都进行差分。

2、  检验协整关系——EG两步法

给出输出结果

(1)若存在长期协整,用VECM法线性过滤,利用利用过滤后的“残差成分”再进行3,4 步;

(2)若不存在长期协整,就不用过滤,直接进行3、4步。

建立长期均衡模型

绘制残差

不存在长期协整,就不用过滤,直接进行3、4步

3、  非线性检验——RESET检验方法

给出输出结果

4、  建立VAR模型、格兰杰因果检验

建立VAR模型给出输出结果

p值小于给定的显著性水平拒绝,一般p值小于0.05,特殊情况下可以放宽到0.1。f统计量大于分位点即可。一般看p值。

格兰杰检验主要看P值即可。例如,若P值小于0.1,则拒绝原假设,变量间存在格兰杰因果关系。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20230103A05MQK00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券