一直为开发者提供优质学习资源的Mybridge最近又发布了一篇资源性文章:机器学习领域开源项目Top 10,AI科技大本营做了简要编译。 张量生成式(简称TC)是一个多功能的C++库,利用Halide、ISL、NVRTC和LLVM框架,它能够自动合成高性能的机器学习内核。 github链接:https://github.com/slundberg/shap ▌Rank 4 NapkinML:由Erik Linder-Norén开源,该项目是浓缩版的NumPy库,能够实现机器学习中的各种模型 [Github 55颗星] github链接:https://github.com/for-ai/CipherGAN ▌Rank 10 PirateAI:由Hugo开源,PirateAI是一个人机交互的项目 颗星] github链接:https://github.com/HugoCMU/pirateAI 原文:https://medium.mybridge.co/machine-learning-top-10
编译 | AI科技大本营 一直为开发者提供优质学习资源的Mybridge最近又发布了一篇资源性文章:机器学习领域开源项目Top 10,AI科技大本营做了简要编译。 张量生成式(简称TC)是一个多功能的C++库,利用Halide、ISL、NVRTC和LLVM框架,它能够自动合成高性能的机器学习内核。 github链接:https://github.com/slundberg/shap ▌Rank 4 NapkinML:由Erik Linder-Norén开源,该项目是浓缩版的NumPy库,能够实现机器学习中的各种模型 [Github 55颗星] github链接:https://github.com/for-ai/CipherGAN ▌Rank 10 PirateAI:由Hugo开源,PirateAI是一个人机交互的项目 颗星] github链接:https://github.com/HugoCMU/pirateAI 原文:https://medium.mybridge.co/machine-learning-top-10
2018年大行其道的10种机器学习的工具和框架。 ? 它的主要优势在于可以用来训练和部署处理稀疏输入的推荐模型。使用DSSTNE开发的模型经训练后可以使用多个GPU,具有可扩展性,并针对快速性能进行了优化。 Azure机器学习工具台是一个跨平台客户软件,它在Windows机器和苹果机器上都可以运行。它是为想要执行数据操纵和处理任务的数据科学家和机器学习开发人员量身打造的。 Turi Create用起来很方便,可用于为推荐、图像处理、文本分类及众多任务构建自定义模型。你只需要对Python有所了解,即可上手! 相关链接:http://cs.stanford.edu/people/karpathy/convnetjs/ 10.BigML BigML是一家知名的机器学习公司,为开发机器学习模型提供了一个易于使用的平台
新智元编译 来源:medium等 编译:小七 【新智元导读】春节必看十大机器学习热门文章排行榜。 在过去的一个月中,我们对将近1400篇机器学习文章进行了排名,精心挑选出了最热门的的十大文章。 ? 1月机器学习top 10文章 1. 机器学习新手的顶级算法之旅 作者:James Le https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-dde4edffae11 10. 数据科学、机器学习和人工智能有什么区别? 作者:David Robinson http://varianceexplained.org/r/ds-ml-ai/ ?
机器学习是个跨领域的学科,而且在实际应用中有巨大作用,但是没有一本书能让你成为机器学习的专家。 在这篇文章中,我挑选了 10 本书,这些书有不同的风格,主题也不尽相同,出版时间也不一样。 机器学习是一个很宽的领域,而 Peter 通过例子的方式,分解了其中主要的部分。 如果你对大数据和机器学习感兴趣,那么我极力推荐这本书,但是这有一个前提,那就是你有一定的背景知识。 我想将这本书推荐给了解机器学习并想更进一步的数据科学家。 模式识别和机器学习 ? 这本书也是为高级数据科学家和高级开发人员准备的。每一章节包含基于数据集中模式的概率和机器学习的话题。 这 10 本书是我精心挑选的,它们涵盖了很宽泛的领域。如果你想更好的理解机器学习或者解决项目中的问题,你需要根据你的实际情况选择最适合你的书,因为它们值得拥有。 对于没有基础的新手来说,我会推荐《傻瓜机器学习》这本书。如果你想着手于 python,那么 python 机器学习是个很好的选择。
吴恩达 Cousera 机器学习课程Andrew Ng 的机器学习课程(Machine Learning | Coursera)是很多人的启蒙课程,难度适中且完全免费。 另一个比较直接的观察是如果大家在知乎上搜索“机器学习如何入门?” ,大部分答案都提到了 Andrew 的这门入门课程,所以这是一门绝对的口碑课程,详细讨论可以参考:微调:为何国人迷恋吴恩达的机器学习课?。 周志华《机器学习》周志华老师的《机器学习》也被大家亲切的叫做“西瓜书”。虽然只有几百页,但内容涵盖比较广泛。然而和其他人的看法不同,我建议把西瓜书作为参考书而不是主力阅读书。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 源 | ynaughty 每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕 确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的Li Hui的这篇博客,讲述了如何选择机器学习的各种方法。 如果对于算法的的准确性要求比较高,推荐的回归算法包括:随机森林,神经网络或者Gradient Boosting Tree。 如果要求速度优先,建议考虑决策树和线性回归。 Victorjs 2D向量库 推荐一些机器学习的路线图 https://ml-cheatsheet.readthedocs.io/en/latest/ 10大机器学习算法 https://www.gitbook.com /book/wizardforcel/dm-algo-top10 http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use
10. DocBlockr 如果你遵循的编码的风格很严格,这款插件能够使你的任务更容易。DocBlokr 帮助你创造你的代码注释,通过解析功能,参数,变量,并且自动添加基本项目。
翻译 | suisui 出品 | 人工智能头条(AI_Thinker) 本文推荐的10大机器学习开源项目是由Mybridge从250个机器学习开源项目中挑选出来的,Github 平均 star为 1385 (这些也是来自Mybridge的资源:①Python 开源项目 Top 10 精选,平均star为1128! ②从1400篇机器学习文章中精选出Top 10,帮你找找上班的感觉! ④我们从8800个机器学习开源项目中精选出Top30 ⑤资源 | 机器学习十大热文新鲜出炉,这个月你该读哪篇? 推荐给你) ▌Rank 1:TensorFlow.js(6129 stars on Github,来自TensorFlow团队) 该项目是一个开源的硬件加速 JavaScript 库,可在浏览器中训练和部署机器学习模型 Bloice) Python机器学习图像增强库。
翻译 | suisui 出品 | 人工智能头条 本文推荐的10大机器学习开源项目是由Mybridge从250个机器学习开源项目中挑选出来的,Github 平均 star为 1385,主题包含:Tensorflow (这些也是来自Mybridge的资源:①Python 开源项目 Top 10 精选,平均star为1128! ②从1400篇机器学习文章中精选出Top 10,帮你找找上班的感觉! ④我们从8800个机器学习开源项目中精选出Top30 ⑤资源 | 机器学习十大热文新鲜出炉,这个月你该读哪篇? 推荐给你) ▌Rank 1:TensorFlow.js(6129 stars on Github,来自TensorFlow团队) 该项目是一个开源的硬件加速 JavaScript 库,可在浏览器中训练和部署机器学习模型 Bloice) Python机器学习图像增强库。
如果你的学校有机器学习、计算机视觉、自然语言处理和机器人学的课,那就赶紧去上吧。 当然也可以来申请谷歌大脑的实习啦! 4. 说3本你最推荐的机器学习的书吧? Ian Goodfellow:哈哈,我当然会推荐我和Yoshua还有Aaron一起写的《深度学习》。 而在我对机器学习颇有了解之后,我就不怎么看新书了,比如说Kevin Murphy’s 写的《Machine learning: A Probabilistic Perspective》,所以我推荐的不一定就是最佳的 我们的基础研究试图改进机器学习的算法,建造出使机器学习更强有力的计算机系统(像TensorFlow),我们也将机器学习应用到医疗保健、机器人学、音乐与艺术生成的问题中。 GAN类问题 10. 机器学习领域的新人应该了解对抗性机器学习的哪些内容? Alexey Kurakin:首先,你要对机器学习和深度学习有一定的了解,这样才能理解这个问题的背景。
《Machine Learning》(《机器学习》) 作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。 《机器学习及其应用》 周志华、杨强主编。来源于“机器学习及其应用研讨会”的文集。 《推荐系统实践》 项亮,不错的入门读 深入 《Pattern Classification》(《模式分类》第二版) 作者Richard O. Duda[5]、Peter E. 极牛的书,可数学味道太重,不适合做机器学习的 《All Of Statistics》 机器学习这个方向,统计学也一样非常重要。 推荐All of statistics,这是CMU的一本很简洁的教科书,注重概念,简化计算,简化与Machine Learning无关的概念和统计内容,可以说是很好的快速入门材料。
本次给大家安利 10 个开源的推荐系统,GitHub链接如下。然后再给大家介绍下推荐系统框架下各个环节及作用。 /lightfm https://github.com/lyst/lightfm 9、python-recsys/crab https://github.com/python-recsys/crab 10 、NicolasHug/Surprise https://github.com/NicolasHug/Surprise 工业推荐系统环节 工业中的推荐系统一般包含四个环节,分别是召回、粗排、精排和重排。 召回:根据用户的兴趣和历史行为,从海量的物品库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节,排序环节可以融入较多特征,使用复杂模型,来精准地做个性化推荐。
输入多个同类的对比词,比如输入对比词:小鹏汽车、理想汽车和蔚来汽车,该网站会搜出对比词在小红书、B站和抖音中的正面和负面评价对比,可用于对产品口碑营销效果的监测。
本文是 Mybridge 挑选的 10 个 Python 开源项目,Github 平均star 2135,希望你能够喜欢~~ ▌Rank 1:Requests-HTML v0.9(7385 stars 项目地址: https://github.com/kennethreitz/twitter-scraper ▌Rank 10:Fast-Pandas(667 stars on Github,来自M.
10、Darkest Dark Theme 主题插件,可以像idea那样有黑色的主题,不过看起来怪怪的,个人不是很喜欢。
本章我们来学习一种最简单的推荐算法:推荐矩阵。虽然简单,但是却被广泛应用着。 1、推荐矩阵 为描述方便,以下我们以“购物推荐”作为背景进行介绍。假设你有个卖商品的网站,拥有每个用户购买每个物品的数据。 这种方式是以用户为中心的,推荐出来的商品b可能跟商品a风流马不相及,因此更适合于类似SNS和微博这样的平台,根据用户的已知兴趣集合来向其推荐其他具有相同兴趣的用户; 2:寻找与商品(a)最为相似的商品( b),认为A既然对a感兴趣,也有可能对b感兴趣; 这种情况是以商品为中心的,因此更适合购物推荐这样的场景。 比如用户A购买了5个商品a,5个商品b,用户B购买了5个商品a,0个商品b,用户C购买了10个商品a,10个商品b,用距离来度量的结果必然是A与B更近。而实际上A跟C是极其相似的。 要计算某个商品a最相似的商品,我们通过计算商品a所在的列与其他的每一列的皮尔森相关系数,找出最大的前N个推荐给用户即可。
机器学习技术类书单推荐,共11本: 《机器学习》 《图解机器学习》 《机器学习实战》【有电子版】 《机器学习系统设计》【有电子版】 《Python机器学习基础教程》【有电子版】 《Python机器学习经典实例 通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。 实战2:必应团队教你ML系统设计 ? ,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。 此外还通过详细的例子和现实应用讲解了常见的机器学习模型,包括推荐系统、分类、回归、聚类和降维。 Mahout核心团队权威力作 大数据时代机器学习的实战经典 Mahout作为Apache的开源机器学习项目,把推荐系统、分类和聚类等领域的核心算法浓缩到了可扩展的现成的库中。
但是现在这种情况正在发生改变,正如标准的API简化了应用程序的开发一样,机器学习API也降低了这一领域的门槛,让越来越多的人和企业能够借助技术底蕴深厚的公司所提供的API试水机器学习。 机器学习API隐藏了创建和部署机器学习模型的复杂性,让开发者能够专注于数据挖掘和用户体验。 ,该平台提供的功能有自然语言处理、推荐引擎、模式识别、计算机视觉以及预测建模等,为了迎合数据科学家的喜好,Microsoft Azure机器学习平台还增加了对Python的支持,用户能够直接将Python ,它能够从BigQuery和Google云存储上读取数据,能够处理销售机会分析、客户情感分析、客户流失分析、垃圾邮件检测、文档分类、购买率预测、推荐和智能路由等用户场景。 Amazon机器学习API Amazon机器学习API让用户不需要大量的数据专家就能够实现模型构建、数据清洗和统计分析等工作,简化了预测的实现流程。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。 今天的推荐来自AQR,是关于机器学习论文的推荐。从“实证资产定价”,到“金融领域如何有效的利用机器学习模型”,再到“如何更有效的进行策略测试”等。 在最广泛的层面上,我们发现与传统方法相比,机器学习在资产定价的应用有着更好的效果。 本文建立的机器学习模型在样本外收益的预测给出了更高的R平方。 资产管理中,机器学习面临着一系列独特的挑战,与机器学习擅长的其他领域明显不同。理解这些差异对于开发有效的方法和资产管理中机器学习的现实期望至关重要。 我们讨论了各种有益的用例和潜在的陷阱,并强调了经济理论和专业知识在金融领域应用机器学习的重要性。