首页
学习
活动
专区
圈层
工具
发布
    • 综合排序
    • 最热优先
    • 最新优先
    时间不限
  • 来自专栏小道

    机器学习学习笔记(2) -- 推荐算法

    1、推荐系统涉及的知识   电子商务业务知识、网站架构运营、机器学习算法、数学建模、大数据平台… 2推荐系统涉及的常见算法   聚类、关联模式挖掘、大规模矩阵运算、文本挖掘、复杂网络和图论计算等… 3 、推荐系统分类 Ⅰ、基于应用领域分类 电子商务推荐系统、社交好友推荐系统、搜索引擎推荐系统、信息内容推荐系统...... Ⅱ、基于设计思想分类 基于协同过滤的推荐系统、基于内容的推荐系统、基于知识的推荐系统 、混合推荐系统...... Ⅲ、基于使用何种数据分类 基于用户行为的推荐系统、基于用户标签的推荐系统、基于社交网络数据的推荐系统、基于上下文信息的推荐系统...... 4、实现协同过滤的步骤 ①收集用户偏好数据 ,基于邻域的推荐算法又分为基于物品推荐算法和基于用户推荐算法。    实现基于邻域的算法思路举例: 推荐数据准备:用户id、物品id、偏好值 --- 把数据看成空间中的向量 (1)建立物品的同现矩阵 (2)建立用户对物品的评分矩阵 (3)矩阵计算推荐结果 ---

    80030发布于 2021-04-13
  • 机器学习书籍推荐

    吴恩达 Cousera 机器学习课程Andrew Ng 的机器学习课程(Machine Learning | Coursera)是很多人的启蒙课程,难度适中且完全免费。 另一个比较直接的观察是如果大家在知乎上搜索“机器学习如何入门?” ,大部分答案都提到了 Andrew 的这门入门课程,所以这是一门绝对的口碑课程,详细讨论可以参考:微调:为何国人迷恋吴恩达的机器学习课?。 周志华《机器学习》周志华老师的《机器学习》也被大家亲切的叫做“西瓜书”。虽然只有几百页,但内容涵盖比较广泛。然而和其他人的看法不同,我建议把西瓜书作为参考书而不是主力阅读书。

    66310编辑于 2024-01-29
  • 来自专栏机器学习算法与Python学习

    推荐 | 图解机器学习

    关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 源 | ynaughty 每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕 确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的Li Hui的这篇博客,讲述了如何选择机器学习的各种方法。 4、然后重复第2)和第3)步,直到,中心点没有移动,那么算法收敛,找到所有的聚类。 如果对于算法的的准确性要求比较高,推荐的回归算法包括:随机森林,神经网络或者Gradient Boosting Tree。 如果要求速度优先,建议考虑决策树和线性回归。 Victorjs 2D向量库 推荐一些机器学习的路线图 https://ml-cheatsheet.readthedocs.io/en/latest/ 10大机器学习算法 https://www.gitbook.com

    1.2K50发布于 2018-04-08
  • 来自专栏null的专栏

    简单易学的机器学习算法——协同过滤推荐算法(2)

    一、基于协同过滤的推荐系统     协同过滤(Collaborative Filtering)的推荐系统的原理是通过将用户和其他用户的数据进行比对来实现推荐的。 具体的可以参见上一篇文章“协同过滤推荐算法(1) ”。 二、面临的问题     在基本的协同过滤的推荐系统中(主要指上面所提到的基本模型中),我们是在整个空间上计算相似度,进而实现推荐的。 四、实验的仿真     我们在这样的数据集上做推荐计算。其中user为2号用户。 ? (相似度的计算) ? (推荐结果) MATLAB代码 主程序 %% 主函数 % 导入数据 %data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0 = score; end end %排序,按照分数的高低进行推荐 [sortScore, sortIndex_1] = sort(itemScore(:,2),

    48920发布于 2019-02-13
  • 来自专栏null的专栏

    简单易学的机器学习算法——协同过滤推荐算法(2)

    一、基于协同过滤的推荐系统     协同过滤(Collaborative Filtering)的推荐系统的原理是通过将用户和其他用户的数据进行比对来实现推荐的。 具体的可以参见上一篇文章“协同过滤推荐算法(1) ”。 二、面临的问题     在基本的协同过滤的推荐系统中(主要指上面所提到的基本模型中),我们是在整个空间上计算相似度,进而实现推荐的。 四、实验的仿真     我们在这样的数据集上做推荐计算。其中user为2号用户。 ? (相似度的计算) ? (推荐结果) MATLAB代码 主程序 %% 主函数 % 导入数据 %data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0 = score; end end %排序,按照分数的高低进行推荐 [sortScore, sortIndex_1] = sort(itemScore(:,2),

    64060发布于 2018-03-15
  • 来自专栏情情说

    推荐2个工具

    话题一转,说说今天的主角:2个工具,一个是抓包工具Charles,一个是API调试工具Postman。 Charles Charles是一个HTTP代理/HTTP监视器/反向代理,它允许开发人员查看他们的机器和Internet之间的所有HTTP和SSL/HTTPS通信,包括请求、响应和HTTP头(包含cookie

    2.9K80发布于 2018-05-11
  • 来自专栏机器人课程与技术

    ROS2机器人编程简述新书推荐-A Concise Introduction to Robot Programming with ROS2

    参考链接: https://github.com/fmrico/book_ros2 封面: 简介: ROS2机器人编程简明教程 使用ROS2进行机器人编程的简明介绍为读者提供了通过编程实现机器人所需的概念和工具 主要功能 •使用ROS2中官方支持的两种编程语言(主要是C++和Python) •从三个不同但互补的维度来处理ROS2:社区、计算图和工作空间 •包括完整的模拟机器人、开发和测试策略、行为树和Nav2描述 共6章,各章简介机器翻译如下: 第1章|18页 简介 本章介绍编程机器人的中间件,特别是ROS2。ROS2需要考虑的维度是ROS社区。开源机器人基金会极大地增强了用户和开发人员的社区。 计算图包含相互通信的ROS2节点,以便机器人可以执行某些任务。此计算图包括两个节点和两个主题,以及它们各自的发布/订阅连接。工作空间维度从静态角度接近ROS2软件。可以同时有多个工作区处于活动状态。 之所以需要启动器(launch),是因为一个机器人应用程序有许多节点,它们都应该同时启动。逐个启动并调整每个节点的特定参数,以便节点进行协作可能会很乏味。最推荐的是使用执行器。

    1.2K30编辑于 2023-01-14
  • 来自专栏机器学习算法与Python学习

    经典机器学习书籍推荐

    《Machine Learning》(《机器学习》) 作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。 《机器学习及其应用》 周志华、杨强主编。来源于“机器学习及其应用研讨会”的文集。 《推荐系统实践》 项亮,不错的入门读 深入 《Pattern Classification》(《模式分类》第二版) 作者Richard O. Duda[5]、Peter E. 《AI, Modern Approach 2nd》 Peter Norvig,无争议的领域经典。 《Nonlinear Programming, 2nd》 最优化方法,非线性规划的参考书。

    3.4K90发布于 2018-04-08
  • 来自专栏机器学习AI算法工程

    用Python开始机器学习:推荐算法之推荐矩阵

    本章我们来学习一种最简单的推荐算法:推荐矩阵。虽然简单,但是却被广泛应用着。 1、推荐矩阵 为描述方便,以下我们以“购物推荐”作为背景进行介绍。假设你有个卖商品的网站,拥有每个用户购买每个物品的数据。 这种方式是以用户为中心的,推荐出来的商品b可能跟商品a风流马不相及,因此更适合于类似SNS和微博这样的平台,根据用户的已知兴趣集合来向其推荐其他具有相同兴趣的用户; 2:寻找与商品(a)最为相似的商品( b),认为A既然对a感兴趣,也有可能对b感兴趣; 这种情况是以商品为中心的,因此更适合购物推荐这样的场景。 要计算某个商品a最相似的商品,我们通过计算商品a所在的列与其他的每一列的皮尔森相关系数,找出最大的前N个推荐给用户即可。 如下图所示: [plain] view plaincopy 1 1 3 1 2 3 1 3 3 1 4 1 2 1 1 2 2 1 2 3 1 2 4 1 ......

    1K80发布于 2018-03-13
  • 来自专栏PPV课数据科学社区

    机器学习技术类书单推荐

    机器学习技术类书单推荐,共11本: 《机器学习》 《图解机器学习》 《机器学习实战》【有电子版】 《机器学习系统设计》【有电子版】 《Python机器学习基础教程》【有电子版】 《Python机器学习经典实例 》【有电子版】 《精通机器学习:基于R(第2版)》【有电子版】 《Spark机器学习》【有电子版】 《Java机器学习》【有电子版】 《Mahout实战》【有电子版】 《机器学习实践:测试驱动的开发方法 入门2:最易上手 ? 通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。 实战2:必应团队教你ML系统设计 ? 此外还通过详细的例子和现实应用讲解了常见的机器学习模型,包括推荐系统、分类、回归、聚类和降维。

    1.1K140发布于 2018-04-20
  • 来自专栏大数据文摘

    推荐5个机器学习API

    但是现在这种情况正在发生改变,正如标准的API简化了应用程序的开发一样,机器学习API也降低了这一领域的门槛,让越来越多的人和企业能够借助技术底蕴深厚的公司所提供的API试水机器学习。 机器学习API隐藏了创建和部署机器学习模型的复杂性,让开发者能够专注于数据挖掘和用户体验。 ,该平台提供的功能有自然语言处理、推荐引擎、模式识别、计算机视觉以及预测建模等,为了迎合数据科学家的喜好,Microsoft Azure机器学习平台还增加了对Python的支持,用户能够直接将Python ,它能够从BigQuery和Google云存储上读取数据,能够处理销售机会分析、客户情感分析、客户流失分析、垃圾邮件检测、文档分类、购买率预测、推荐和智能路由等用户场景。 Amazon机器学习API Amazon机器学习API让用户不需要大量的数据专家就能够实现模型构建、数据清洗和统计分析等工作,简化了预测的实现流程。

    1.1K80发布于 2018-05-22
  • 来自专栏量化投资与机器学习

    AQR:机器学习相关论文推荐

    量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。 公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,连续2年被腾讯云+社区评选为“年度最佳作者”。 今天的推荐来自AQR,是关于机器学习论文的推荐。 在最广泛的层面上,我们发现与传统方法相比,机器学习在资产定价的应用有着更好的效果。 本文建立的机器学习模型在样本外收益的预测给出了更高的R平方。 资产管理中,机器学习面临着一系列独特的挑战,与机器学习擅长的其他领域明显不同。理解这些差异对于开发有效的方法和资产管理中机器学习的现实期望至关重要。 我们讨论了各种有益的用例和潜在的陷阱,并强调了经济理论和专业知识在金融领域应用机器学习的重要性。  

    1.1K20编辑于 2022-03-03
  • 来自专栏有关SQL

    推荐 2 个阅读神器

    说下我推荐2个阅读神器。 为什么说是阅读,而不是看书呢。在我朋友圈的读者们,可能已经知道了。比起看书,我平常阅读更多的是,期刊论文或者博硕毕设。偶尔,要学点新技术,看书才会成为我的选择。 所以,我要推荐的,1个神器,是微信读书,用来看书;第2个神器,是知网和谷歌学术。 微信读书,是我的年度最佳 app ,绝对可以排前三。 这大概和程序员喜欢用三台电脑同时开工,而不是一台强悍机器,一样的道理 但,知网和谷歌学术,又超越了微信读书。 微信读书提供的全文检索,还是单调。知网的高级搜索和专业搜索,才是大爱。 下图层1,是谷歌学术搜索;图层2/3,是知网的。但,他俩代表的是两个世界 如果你有好的看书,阅读神器,也欢迎留意,与大家一起分享! 不出意外,这是农历2022年前,最后一篇文章了。

    88320编辑于 2022-03-31
  • 来自专栏企鹅号快讯

    推荐系统机器学习算法概览

    来源:Medium 编译:weakish 编者按:Statsbot数据科学家Daniil Korbut简明扼要地介绍了用于推荐系统的主流机器学习算法:协同过滤、矩阵分解、聚类、深度学习。 当我们想向用户推荐东西时,最符合逻辑的做法是找到有相似兴趣的人,分析他们的行为,然后给我们的用户推荐相同的东西。 或者我们可以查看与用户之前所购类似的物品,并进行相应的推荐。 聚类也能提升复杂推荐系统的性能。 深度学习 十年来,神经网络有一个巨大的飞跃。今天,神经网络被应用到许多领域,正逐渐取代传统的机器学习方法。我想谈一下YouTube使用的深度学习方法。 评分最高的那些视频将被推荐给用户。 使用这一两步方法,我们可以基于一个非常巨大的视频语料库推荐视频,同时保证推荐的少量视频是个性化的。这一设计也允许我们混合从其他来源生成的候选视频。 构建你自己的推荐系统 基于大型数据库的在线推荐,最好的办法是将这个问题拆分成两个子问题:1)选择排名最高的N个候选 2)对它们进行评分。 如何评估模型质量?

    1.7K80发布于 2018-03-02
  • 来自专栏目标检测和深度学习

    推荐 | 机器学习开源项目 Top 10

    一直为开发者提供优质学习资源的Mybridge最近又发布了一篇资源性文章:机器学习领域开源项目Top 10,AI科技大本营做了简要编译。 Research提出的,一种用于表达机器学习工作负载领域的特定语言。 张量生成式(简称TC)是一个多功能的C++库,利用Halide、ISL、NVRTC和LLVM框架,它能够自动合成高性能的机器学习内核。 此外,张量生成式还提供了底层接口,能够与Caffe2、PyTorch框架无缝衔接,实现很好的兼容性。更多关于该库的细节,我们将在论文中进行详细说明,论文已发表在arXiv上。 HugoCMU/pirateAI 原文:https://medium.mybridge.co/machine-learning-top-10-open-source-projects-v-mar-2018-9d2c1d2ed00c

    1.7K20编辑于 2022-03-04
  • 来自专栏智能大数据分析

    机器学习 | 数据挖掘】智能推荐算法

    它结合了大数据技术、人工智能(AI)、机器学习(ML)和数据挖掘等多种方法,旨在通过自动化的方式分析复杂数据集,发现潜在的价值和关联性,实现数据的自动化处理和分析,从而支持决策和优化业务流程。 虽然RSS订阅已淡出了舞台,但是它为智能推荐起到了铺垫作用,用户已经尝到了个性化的甜头,由机器进行个性化推荐自然而然地得到了广泛应用。 国内的电商平台也普遍运用了推荐系统,如淘宝网和京东的“猜你喜欢”和“您可能还需要”栏目也是为人们所熟知的推荐系统应用。 2. 视频网站 在视频网站中个性化推荐系统也得到了很好的应用。 2. 健壮性 在线上运行的算法系统不可避免地会遭受被人攻击的问题,对于推荐系统而言,最常见的攻击就是作弊问题,健壮性指标衡量了一个推荐系统抗作弊的能力。 最后,基于对未评分商品的预测分值排序,得到推荐商品列表。 2. 基于用户的个性化的电影推荐 通过个性化的电影推荐的实例演示基于用户的协同过滤算法在Python中的实现。

    46410编辑于 2025-01-22
  • 来自专栏AI研习社

    Github项目推荐 | Python机器学习课程

    Machine Learning Course with Python by Machine Learning Mindset 简介 本项目的目的是提供一个全面而简单的使用Python的机器学习课程。 machine-learning-course.readthedocs.io/en/latest/ Github项目地址: https://github.com/machinelearningmindset/machine-learning-course#id4 动机 机器学习 现在已经有大量的关于机器学习的文献。这个项目的目的是通过一个全面而简单的使用Python的机器学习教程来提供机器学习的最重要方面内容的了解学习。 在这个项目中,我们使用许多著名机器学习框架(如Scikit-learn)来构建我们的教程。 在这个项目中,你将学习到: 机器学习的定义是什么? (机器学习)从什么时候开始,它的趋势是什么? 机器学习分类和子分类是什么? 最常用的机器学习算法有哪些,以及如何实现它们? 机器学习 主题 文档 机器学习简介 Overview 机器学习基础 ?

    95840发布于 2019-05-22
  • 来自专栏机器学习与推荐算法

    推荐算法背后的机器学习技术

    假如机器学习想要学到的,真实的目标方程为: 其中,x为自变量或者特征变量, y为目标或者标签变量。自变量取值分别为x1,x2到xn, 分别对应每一个的y的观察值。 而在机器学习算法训练中,偏差或方差则跟模型的复杂度有直接关系。如图2所示,机器学习模型偏差和方差分别随着模型复杂度提升的变化有这样的曲线关系。 图2 机器学习模型偏差和方差随着模型复杂度变化趋势 如图2所示,随着模型复杂度上升,模型的偏差总是会逐步降低,但是方差却会逐渐上升,因此总的误差开始逐渐变小,然后有逐渐增大。 (2)非分布式:许多效果优异的机器学习算法,并不容易被改造成分布式计算方式。比如支持向量机(SVM),梯度增强算法(GBM)等。 (3)C分类:2个真正的C分类为正确预测为C,即2个TP;2个其他分类被错误的预测为C,即2个FP。

    60630编辑于 2022-10-31
  • 来自专栏机器学习与统计学

    优秀教程推荐|机器学习100天

    人工智能很火 所以网上各式各样的资料特别多 动辄几十GB,上百GB的云盘链接 但是能把一个教程完整看完的少之又少 坚持下去确实很难 最近在github看到一个很不错的机器学习教程 100 Days of

    46020发布于 2019-04-08
  • 来自专栏AI科技大本营的专栏

    推荐 | 机器学习开源项目 Top 10

    编译 | AI科技大本营 一直为开发者提供优质学习资源的Mybridge最近又发布了一篇资源性文章:机器学习领域开源项目Top 10,AI科技大本营做了简要编译。 Research提出的,一种用于表达机器学习工作负载领域的特定语言。 张量生成式(简称TC)是一个多功能的C++库,利用Halide、ISL、NVRTC和LLVM框架,它能够自动合成高性能的机器学习内核。 此外,张量生成式还提供了底层接口,能够与Caffe2、PyTorch框架无缝衔接,实现很好的兼容性。更多关于该库的细节,我们将在论文中进行详细说明,论文已发表在arXiv上。 HugoCMU/pirateAI 原文:https://medium.mybridge.co/machine-learning-top-10-open-source-projects-v-mar-2018-9d2c1d2ed00c

    66480发布于 2018-04-26
领券