首页
学习
活动
专区
圈层
工具
发布
    • 综合排序
    • 最热优先
    • 最新优先
    时间不限
  • 来自专栏云云众生s

    发挥现代信息技术,助力拯救生命医学进步

    近年来,医学研究和医疗保健行业见证了基因组测序和AI辅助医疗应用等救命技术进步带来的革命性突破。然而,这些新技术每月为医疗机构生成数百TB的基因组数据。 其放射科现在使用AI和数据分析来阅读医学图像、识别异常并向专家提供建议进行专业评估。有了现代的数据存储系统,该中心的AI驱动工具提高了阅读准确度并加快了患者治疗。 其放射科现在使用AI和数据分析来阅读医学图像、识别异常并向专家提供建议进行专业评估。有了现代的数据存储系统,该中心的AI驱动工具提高了阅读准确度并加快了患者治疗。

    10210编辑于 2024-03-28
  • 来自专栏全栈程序员必看

    医学图形图像处理(医学影像和医学图像处理)

    文章目录 1 图像和数字图像 2 图像分类 2.1 简单分类 2.2 传感器分类 2.3 维度分类 3 图像处理流程 4 医学图像 1 图像和数字图像 数字图像: 被定义为一个二维函数,f(x,y), 图像数据:   生活中是二维的,医学上通常还有3维和4维的。比如在关注心脏跳动的时候,不仅关注其三维结构,还要关注时间轴变化。   三维图像:一个像素描述成一个体素。    医学图像中常用的是dicom 2 图像分类 2.1 简单分类 (1)二值图像:包含两个值,通常为0、255 (2)灰度图像: 0-255灰阶,更能表现自然界图像形态。 4 医学图像 (1)CT图像: 骨结构、组织结构(不太清晰) (2)MRI(核磁共振)图像: 清晰看到除了骨结构之外的一些软组织,更能描述人体软组织结构。

    1.4K10编辑于 2022-07-31
  • 来自专栏最新医学影像技术

    医学图像处理教程(三)——医学图像增强算法

    今天将给大家分享医学图像常见图像增强算法。

    3.1K50发布于 2020-06-29
  • 来自专栏计算机视觉life

    医学图像处理

    0、引言 医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。 世界各地的医学图像处理机构已经迅速进入该领域,并将CNN和其它深度学习方法应用于各种医学图像分析。 在医学成像中,疾病的准确诊断和评估取决于医学图像的采集和图像解释。 图12 多模态医学图像融合的例子。 图像分析技术在医学上的应用 [J] . 包头医学院学报, 2005, 21 (3) : 311~ 314 [2]周贤善. 医学图像处理技术综述[J]. 图像分析技术在医学上的应用 [J] . 包头医学院学报, 2005, 21 (3) : 311~ 314

    3.9K42发布于 2019-07-10
  • 来自专栏机器学习、深度学习

    医学图像分割

    Topology Aware Fully Convolutional Networks For Histology Gland Segmentation

    90120发布于 2019-05-26
  • 来自专栏CV学习史

    医学图像了解

    医学图像 医学图像是反映解剖区域内部结构或内部功能的图像,它是由一组图像元素——像素(2D)或立体像素(3D)组成的。医学图像是由采样或重建产生的离散性图像表征,它能将数值映射到不同的空间位置上。 像素的数量是用来描述某一成像设备下的医学成像的,同时也是描述解剖及其功能细节的一种表达方式。 ,分别为DICOM(医学数字成像和通讯)、NIFTI(神经影像信息技术)、PAR/REC(Philips磁共振扫描格式)、ANALYZE(Mayo医学成像)、NRRD(近原始栅格数据)和MNIC 现代神经影像学技术 它定义了质量能满足临床需要的可用于数据交换的医学图像格式 PET是正电子发射断层显像(Positron Emission Tomography)的缩写,是一种先进的核医学影像技术;CT是计算机断层摄影术 Dicom 它定义了质量能满足临床需要的可用于数据交换的医学图像格式,可用于处理、存储、打印和传输医学影像信息。

    2.3K31发布于 2019-09-10
  • 来自专栏最新医学影像技术

    医学图像处理教程(四)——医学图像去噪算法

    今天将给大家分享医学图像常见三种图像去噪算法。

    4.9K21发布于 2020-06-29
  • 来自专栏最新医学影像技术

    医学图像处理案例(十三)——快速行进算法分割医学图像

    今天将分享使用快速行进算法(FastMarching)对医学图像分割案例。

    4.3K63发布于 2020-06-29
  • 来自专栏最新医学影像技术

    医学图像处理案例(二十)——医学图像处理案例代码详解

    在前面分享的医学图像处理案例中,给出了很多具体案例,但有些读者还是渴望可以深入分享案例代码详解。那么今天我将从骨骼分割,气管分割,肺组织分割,血管分割这四个具体案例来详细讲解如何来实现。

    4.1K54发布于 2020-06-29
  • 来自专栏全栈程序员必看

    医学图像处理(医学图像处理研究生就业选择)

    医学影像学 医学影像学Medical Imaging,是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来,供诊断医师根据影像提供的信息进行判断 ,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。 课程设置包括:(1)主干学科:基础医学、临床医学医学影像学.(2)主要课程:物理学、电子学基础、计算机原理与接口、影像设备结构与维修、医学成像技术、摄影学、人体解剖学、诊断学、内科学、影像诊断学、影像物理 、超声诊断、放射诊断、核素诊断、介入放射学、核医学医学影像解剖学、肿瘤放疗治疗学、B超诊断学。 在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当 前大约有百亿级符合DICOM标准的医学图像用于临床使用。 5.

    2.1K31编辑于 2022-08-02
  • 来自专栏最新医学影像技术

    医学图像处理教程(五)——医学图像边缘检测算法

    今天将给大家分享医学图像常见两种图像边缘检测算法。

    3.3K30发布于 2020-06-29
  • 来自专栏计算机视觉理论及其实现

    生命游戏

    根据 百度百科 , 生命游戏 ,简称为 生命 ,是英国数学家约翰·何顿·康威在 1970 年发明的细胞自动机。 给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细胞。

    28420编辑于 2023-10-27
  • 来自专栏HyperAI超神经

    医学AI又一突破,微软开源生物医学NLP基准:BLURB

    Natural Language Processing 生物医学特定领域的语言模型预训练》,介绍并开源了一个能够用于生物医学领域 NLP 基准,并命名为 BLURB。 医学 NLP 基准,BLURB 身负重任 BLURB 包括 13 个公开可用的数据集,涉及 6 个不同的任务。 生物医学 NLP :必须使用域内文本 研究已经表明生物医学 NLP 可以在医学领域提高数据集的准确性。但是在跨学科的数据集中,准确性又会大大降低。 而由于不同医学领域之间(Domain)跨度较大,所以对于 NLP 的预训练会花费非常多的时间。 同时,为了鼓励对生物医学 NLP 的研究,研究人员创建了以 BLURB 基准为基准的排行榜,还开源了预训练模型。以求快速生物医学 NLP 能够早日投入使用。

    89010发布于 2020-08-13
  • 来自专栏AI算法与图像处理

    医学图像分割:UNet++

    分割的准确性对于医学图像至关重要,因为边缘分割错误会导致不可靠的结果,从而被拒绝用于临床中。 为医学成像设计的算法必须在数据样本较少的情况下实现高性能和准确性。

    1.6K21发布于 2020-11-23
  • 来自专栏基于深度学习的图像增强

    医学图像跨域合成

    背景 这篇文章主要介绍一些基于深度学习的医学图像合成的论文,医学图像跨域合成一般是指从一种模态转化为另一种模态,包括CT到PET,MR到CT,CT到MR及MRI中T1,T2,FLAIR等之间的转化。 医学图像合成是解决这一问题的有效方法,可以将缺失的模态从已有的模态中合成出来。

    1.4K20发布于 2020-09-07
  • 来自专栏深度学习和计算机视觉

    医学图像分割:UNet++

    分割的准确性对于医学图像至关重要,因为边缘分割错误会导致不可靠的结果,从而被拒绝用于临床中。 为医学成像设计的算法必须在数据样本较少的情况下实现高性能和准确性。

    1.5K30编辑于 2022-04-06
  • 来自专栏3D视觉从入门到精通

    汇总|医学图像数据集

    of Medicine presents MedPix 数据下载链接:https://medpix.nlm.nih.gov/home 数据介绍:MedPix®是一个免费的开放式在线访问数据库,其中包含医学图像 我们的主要目标受众包括医师和护士,专职医疗人员,医学生,护理生以及其他对医学知识感兴趣的人。内容材料按疾病位置(器官系统)组织;病理类别患者资料;以及通过图像分类和图像标题。

    4.9K30发布于 2020-12-11
  • 来自专栏最新医学影像技术

    医学图像处理教程(一)——医学算法数据的基本概念

    从今天起我将开始分享医学图像处理基础算法课程,从最基本的函数开始,分享函数的原理,函数API参数讲解,每篇都会给出一个示例。 1、如何安装Python版本的SimpleITK包 为了快速上手算法开发,采用Python版本的SimpleITK开发包来完成医学图像处理算法开发。

    2.7K51发布于 2020-06-29
  • 来自专栏最新医学影像技术

    医学图像处理案例(十五)——基于小波变换的医学图像融合

    今天将介绍使用小波变换来对多模态医学图像进行融合。 2、基于小波变换的多模态医学图像融合代码实现 我将分享python版本代码来融合多模态MR图像,融合策略是低频图像采用平均值法,高频图像采用最大值法。

    2.7K20发布于 2020-06-29
  • 来自专栏AiCharm

    医学多模态大模型LLaVA-Med | 基于LLaVA的医学指令微调

    然而,虽然在通用领域取得了成功,但是这样的LMMs在生物医学领域的效果较差,因为生物医学图像-文本对与通用网络内容截然不同。 在本文中,我们提出了用于生物医学领域的大型语言和视觉助手(LLaVA-Med),这是首次尝试将多模态指令调整扩展到生物医学领域,进行端到端的训练以开发生物医学多模态对话助手。 已经证明,针对生物医学自然语言处理(NLP)应用和生物医学视觉-语言(VL)任务进行领域特定的预训练是有效的。 我们提出了一种新颖的课程学习方法,将LLaVA调整到生物医学领域,使用我们自动生成的生物医学多模态指令遵循数据进行微调。 为了促进生物医学多模态学习的研究,我们将向公众发布以下资源:生物医学多模态指令遵循数据集以及数据生成和模型训练的代码库。

    2.8K20编辑于 2023-07-26
领券