监督式学习,是一个机器学习中的方法,可以由训练资料中学到或建立一个模式,并依此模式推测新的实例。
监督学习(Supervised Learning)是机器学习中的一个重要学习方式,它主要利用一组已知类别的样本来训练模型,使模型能够预测新样本的输出。以下是对监...
在本文中,我们将探讨机器学习的目的以及何时应该使用特定技术。因此,我们将根据简单的示例了解它们的工作原理。
与监督学习不同,无监督学习不依赖于带标签的数据。在无监督学习中,数据集没有明确的标签,算法的任务是从数据中挖掘潜在的结构或模式。常见的无监督学习任务包括聚类、降...
近期,BCG AI研究所与默克公司合作开发的TEDDY模型家族——基于116百万单细胞数据训练的首个单细胞基础模型,通过大规模数据整合和生物注释监督学习,在疾病...
监督学习,也称为指令微调,是大型语言模型 (LLM) 训练过程的第二阶段。这是一个关键阶段,它建立在自监督学习阶段获得的基础知识之上。
蛋白质语言模型(Protein Language Models, pLMs)已成为研究蛋白质序列与功能之间关系的重要工具。这些模型通过自监督学习从蛋白质序列中提...
该结果表明,当两个学习过程都有足够的数据或计算时,蒸馏不能产生比监督学习更低的模型交叉熵。但是,如果以下两个条件都成立,则蒸馏比监督学习更有效:
准确率通常定义为正确预测的比例(包括真正例和真负例)与总案例数之比。如果你熟悉监督学习中的分类问题,可能已经对这个指标有所了解。在检索和RAG的背景下,它的计算...
由于公司的愿景逐渐调整为ONE Tech Company,公司的IT战略也逐渐地朝着Data & AI Driven发展,因此近半年来我一直在学习大模型相关的东...
合成孔径雷达(Synthetic Aperture Radar, SAR)作为一种基于电磁波的主动探测技术,具有全天时、全天候的对地观测能力,已发展成为一种不可...
随着人工智能(AI)的飞速发展,计算机视觉(CV)已经成为支撑多种AI应用的重要基础。从自动驾驶汽车、面部识别系统到精准医疗影像分析,计算机视觉的技术正在极大地...
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,所以统称为贝叶斯分类。朴素贝叶斯是一种贝叶斯分类算法,在许多场合可以与决策树和神经网络分类算法...
本文将会首先介绍集成学习的思路以及一些常用的集成学习方法,然后介绍梯度提升决策树模型。在前面的文章中,我们讲解了许多不同的机器学习算法,每个算法都有其独特的...
本文开始,我们将介绍机器学习中与神经网络并行的另一大类模型——决策树(decision tree)模型及其变种。决策树模型是非参数化模型。决策树模型简称树模...
本文将会介绍机器学习中最重要的内容之一——神经网络(neural network,NN),它是深度学习的基础。神经网络的名称来源于生物中的神经元。自有计算机...
从本文开始,我们介绍参数化模型中的非线性模型。在前几篇文章中,我们介绍了线性回归与逻辑斯谛回归模型。这两个模型都有一个共同的特征:包含线性预测因子
在介绍了机器学习中相关的基本概念和技巧后,本章我们继续讲解参数化模型中的线性模型。有了前文的基础,我们可以先来对KNN算法和线性回归进行比较,进一步回答“什...
文本是一类非常重要的非结构化数据,如何表示文本数据一直是机器学习领域的一个重点研究方向。文本向量就是深度学习时代产生的一种文本表示的方法。
论文链接:https://arxiv.org/pdf/2104.08683.pdf