在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV9模型中,以替换其原有的主干网络,这一创新性的...
在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV10模型中,以替换其原有的主干网络,这一创新性...
在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV8模型中,以替换其原有的主干网络,这一创新性的...
在深度学习的广阔领域中,目标检测作为计算机视觉的基石任务之一,始终吸引着研究者的广泛关注。近期,我们大胆尝试将前沿的PoolFormer主干网络引入经典的目标检...
在追求高效且高精度的目标检测领域,RT-DETR凭借其卓越的性能和广泛的应用基础,一直是研究者和开发者们的首选框架之一。然而,随着应用场景的不断拓展,对模型尺寸...
在深度学习领域,目标检测作为计算机视觉的核心任务之一,其性能的提升始终吸引着研究者们的目光。近期,我们创新性地将Swin Transformer这一前沿的Tra...
由于复杂的注意力机制和模型设计,大多数现有的视觉Transformer(ViTs)在实际的工业部署场景中,如TensorRT和CoreML,无法像卷积神经网络(...
涨点效果:在我自己的数据集上,mAP50 由0.986涨到了0.993,mAP50-95由0.737涨到0.77,涨点明显!
YoloV7虽然和YoloV5、YoloV8一脉相承,但是其配置文件及其复杂,对修改造成一定的难度。
计算机视觉中的一个基本问题是在三维空间中理解和识别场景与物体。它允许以紧凑的方式表达关系,并提供在现实世界中导航和操作的能力。3D视觉在各个领域都发挥着重要作用...
大型视觉语言模型(LVLMs)能够将图像和文本表示对齐,以理解跨越前所未有的真实世界数据规模的图像中的普遍关系,这已经在现代机器学习中呈现出显著的范式转变。许多...
视觉Transformer(ViT)[18]通过将自然语言处理(NLP)中的高级序列建模层Transformer [91]引入计算机视觉领域,从而实现了视觉表示...
“问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更清晰的认识和理解,是自我提高的不竭源泉。为此,我们特别精...
指纹是一种不可变且独特的生物特征,广泛应用于各种场景中的人体认证,包括法医、银行识别和物理访问控制。
检测输电和配电塔对于电力网的安全可靠运行至关重要,因为这些塔的位置和数量是设计电力网络拓扑和规划其扩展的关键参数。将遥感(RS)和深度学习技术相结合作为一种广泛...
CIFAR-10(Krizhevsky等人,2009年)是机器学习中最受欢迎的数据集之一,每年支持数千个研究项目。如果能够提高在CIFAR-10上训练神经网络的...
受到自然语言处理(NLP)[1]中占主导地位的Transformer结构的启发,计算机视觉(CV)领域见证了Vision Transformer(ViT)在视觉...