Python: 3.7 或更高版本(推荐 3.8 或 3.9,与 PyTorch 和 Transformers 兼容性更好)。
最近在看一篇github上大佬的文章,从0开始训练llama3,觉得对于《从0开发大模型》有点帮助,于是翻译一下,发现其中很多内容当前系列文章的知识点相似。 原...
这里,我们就需要用到 PyTorch 提供的一个“神器”:with torch.no_grad()。
本文基于Pytorch复现论文 Towards Effective Visual Representations for Partial-Label Learn...
在强化学习(RL)领域,如何稳定地优化策略是一个核心挑战。2015 年,由 John Schulman 等人提出的信赖域策略优化(Trust R...
解决方法1 WHISPER使用的时候出现的问题,因为并不想动之前的pytorch环境,解决办法在参数中加入fp16=False即可
大家好,我是默语。今天我们来讨论一个在深度学习框架PyTorch中常见的问题:AssertionError: Torch not compiled with C...
torch.nn 模块是PyTorch中专门用于构建和训练神经网络的模块。它提供了一系列的类和函数,帮助我们轻松地定义和操作神经网络。无论是简单的线性回归模型,...
图结构数据在现实世界中无处不在,从社交网络中的用户关系,到推荐系统中的用户-物品交互,再到生物信息学中的分子结构。传统的机器学习模型在处理这些数据时常常力不从心...
PyTorch 计算的数据都是以张量形式存在, 我们需要掌握张量各种运算. 并且, 我们可以在 CPU 中运算, 也可以在 GPU 中运算.
自动微分(Autograd)模块对张量做了进一步的封装,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,在神经网络的反向传播过程中,Autograd...
PyTorch 是一个 Python 深度学习框架,学习PyTorch在当今深度学习领域至关重要。PyTorch以其动态计算图、易于使用的API和强大的社区支持...
可以用torch.stack()函数将多个张量合并,torch.stack()函数和torch.cat()函数有略微的差别,torch.stack()函数用于进...
7B的baichuan、qwen等模型出厂默认为float32,占用显存32G,对于V100的单卡,很容易爆显存。需要在AutoModelForCausalLM...
二维卷积运算是信号处理和图像处理中常用的一种运算方式,当给定两个二维离散信号或图像
前馈神经网络的优点包括能够处理复杂的非线性关系,适用于各种问题类型,并且能够通过训练来自动学习特征表示。然而,它也存在一些挑战,如容易过拟合、...
假设输入的尺寸是(𝑁,𝐶,𝐻,𝑊),输出尺寸是(𝑁,𝐶,𝐻𝑜𝑢𝑡,𝑊𝑜𝑢𝑡),kernel_size是(𝑘𝐻,𝑘𝑊),可以写成下面形式 :
这里将介绍如何从零开始,使用Transformer模型训练一个最小化的聊天机器人。该流程将尽量简化,不依赖预训练模型,并手动实现关键步骤,确保每一步都容易理解。