==说明==:Node节点class对象代码请查看上一篇文章,https://blog.csdn.net/a924382407/article/details/...
很久之前,就有人问我如何做一个基于大数据技术的xx推荐系统。当时对于这个问题,着实难倒我了,因为当时只是知道一个协同过滤,其他的也没有过于深度研究。
在现代社交网络中,信息和影响力的传播无处不在。影响力最大化(Influence Maximization,以下简称IM)旨在找出网络中最有影响力的少数用户,从而...
无论文,有算法竞赛经历,无实习,有两段科研经历(CV方向)但没有paper,机器学习和深度学习、算法数据结构基础还可以,推荐算法是3月之后跟着下面这个链接学的,...
用户行为能够真实的反映每个用户的偏好和习惯,其中的显示反馈数据会比较稀疏,隐式的反馈数据蕴含了大量的信息。
本文介绍了腾讯游戏社交算法团队研发的能够处理百亿级大规模图数据的分布式网络表征算法,及其在多个游戏业务场景落地应用,并且取得明显的实际业务效果提升。
基于3的关联信息,人们设计了“协同过滤的推荐算法”。 基于2的内容信息,设计出“基于内容的推荐算法”。 现在的推荐系统普遍同时利用这三种信息,下面我们就来看看这...
E∗∘ω∗表示对比视图创建操作,不同的基于对比学习的推荐算法有不用的创建过程。每个视图的构造由数据增强过程ω∗(可能涉及在增强图中的节点/边)以及嵌入编码过程E...
TLDR: 本文全面综述了自监督学习(SSL)在推荐系统中的应用,深入分析了逾170篇论文。提出了一个涵盖九大推荐场景的自监督分类体系,详细探讨了对比学习、生成...
TLDR: 本文提出一种通用的去噪自增强学习框架,该框架不仅结合了社会影响力来帮助理解用户偏好,而且还通过识别社会关系偏差和去噪跨视图自监督来减轻噪声影响。
三是推荐算法不会消失,因为推荐算法的准确度非常高,最差的情况下它也会作为一种 backend 内嵌于大模型当中。
看到这个消息,感觉非常振奋,毕竟特斯拉走的纯视觉的自动驾驶方案,如果能发布Robotaxi,说明特斯拉的自动驾驶技术已经比较成熟了。
TLDR: 本文针对协同过滤技术固有的数据稀疏问题,提出了两种监督对比损失函数,将锚定节点的近邻信息视为最终目标损失函数内的正样本。通过对所提出的损失函数进行梯...
代码和模型权重已上线GitHub。官方信息显示,此次开源的Grok-1是一个3140亿参数的混合专家模型——
大家好,这里是 NewBeeNLP。今天看看Meta的最新推荐算法论文,“统一的生成式推荐”(GR) 第一次在核心产品线替换掉了近十年推荐工业界长期使用的分层海...
机器学习算法中,经常需要 判断两个样本之间是否相似 ,比如KNN,K-means,推荐算法中的协同过滤等等,常用的套路是 将相似的判断转换成距离的计算 ,距离近...
赵前(im0qianqian、千千),一个电脑迷、技术控,退役 ACMer(CF 2000+)。主要研究图学习、推荐算法、大语言模型与知识图谱的应用,曾在 Se...
这几日传得沸沸扬扬的「清华夫妻因谷歌裁员双双自杀」案件,由当地警方公布了现场细节: