基于人工设计的规则和模板,对自然语言文本进行分析和理解。这种方法需要人工参与规则和模板的设计和维护,因此可扩展性和适应性较差。
基于大规模语料库训练的统计模型,对自然语言文本进行分析和理解。这种方法可以自动学习语言规律和模式,但对于少量数据和复杂情况的处理效果较差。
基于深度神经网络,对自然语言文本进行分析和理解。这种方法可以自动学习语言规律和模式,对于少量数据和复杂情况的处理效果较好,但需要大量的计算资源和训练数据。
基于知识图谱,对自然语言文本进行语义分析和理解。这种方法可以利用知识图谱中的实体、关系和属性,进行实体识别、关系抽取、事件抽取等任务,但需要大量的知识和数据支持。