暂无搜索历史
桔妹导读: LogI-KafkaManager脱胎于滴滴内部多年的Kafka运营实践经验,是面向Kafka用户、Kafka运维人员打造的共享多租户Kafka云平...
LogI-KafkaManager脱胎于滴滴内部多年的Kafka运营实践经验,是面向Kafka用户、Kafka运维人员打造的共享多租户Kafka云平台。专注于K...
线上某个kafka集群由于种种原因,从 24 * 机型 A 置换迁移为 12 * 机型 B。从集群总资源维度看,排除其他客观因素,置换后,CPU总核数少了一半,...
腾讯云开发者社区技术沙龙官方号
消费组应该算是kafka中一个比较有特色的设计模式了,而他的重平衡机制也是我们在实际生产使用中,无法避免的一个问题。
之前和大家聊过kafka是如何保证消息不丢失的,今天再讲讲在不丢消息的同时,如何实现精确一次处理的语义实现。
目前官方开源的Dr.Elephant还不支持Hadoop3。
不过你编译老版本的包,一样可以采集分析Hadoop3的MapReduce和Spark作业,通过配置history server 的REST API地址即可。Tez jobs可能会有些问题。
今天和大家聊一下,kafka对于消息的可靠性保证。作为消息引擎组件,保证消息不丢失,是非常重要的。
今天继续和大家聊一下,kafka的各种发行版。kafka历经数年的发展,从最初纯粹的消息引擎,到近几年开始在流处理平台生态圈发力,衍生出了各种不同特性的版本。
上篇文章我们了解到,如果一个topic分区越多,理论上整个集群所能达到的吞吐量就越大。那么,分区数越多就越好吗?显然不是。今天我们来聊下kafka在分区数过多的...
要讲 kafka 分区数和吞吐量的关系,首先得理解什么是分区(partition)。
你可以使用Dr. Elephant来分析你的作业(只需在搜索页贴入你的作业ID),就可以知道你的作业有哪些地方需要优化。
Dr.Elephant这个项目希望构建一个可以自动优化hadoop mapreduce相关函数的调优框架。在这种情况下,是为了函数消耗最少的资源来完成作业。我们...
我们将作业的资源使用量定义为任务容器大小和任务运行时间的乘积。因此,作业的资源使用量可以定义为mapper和reducer任务的资源使用量总和。
这个页面包含了集群最近的统计信息。列出了最近 24 小时分析过的作业数量,可进行优化的作业数量和待优化的作业数量。
为了在本地部署Dr.Elephant测试,你需要安装Hadoop(version 2.x)或者Spark(Yarn mode, version > 1.4.0)...
Step 1: 在 GitHub 上注册一个账号,并 fork 一份Dr. Elephant项目代码。
Dr. Elephant依赖于 YARN 的资源管理服务器和历史作业记录服务器,来获取作业详细信息和记录。YARN 作业及其分析的详细信息将存储在当前配置的后端...
暂未填写学校和专业