暂无搜索历史
这一小节介绍如何基于MindNLP和ChatGLM-6B实现一个聊天应用,首先我们安装环境下载模型。
按照贪心搜索输出序列("The","nice","woman") 的条件概率为:0.5 x 0.4 = 0.2
在情感分类任务中,首先通过`load_dataset`函数加载IMDB数据集,该数据集分为训练集和测试集,以确保有效利用标注好的电影评论进行模型训练和评估。在此...
Grover搜索算法,这是一种利用量子状态叠加性进行并行计算并实现加速的算法。Grover搜索算法解决了无序数据库搜索问题,其时间复杂度远低于经典算法,展示了量...
使用mindnlp库实现GPT2模型进行文本摘要,采用BertTokenizer进行分词, 使用线性预热和衰减的学习率策略进行模型训练. 通过多种数据预处理和模...
BERT是一种由Google于2018年发布的新型语言模型,它是基于Transformer中的Encoder并加上双向的结构。BERT模型采用了Masked L...
IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处...
序列标注是对输入序列中的每个标记进行标注标签的过程,常用于信息抽取任务,如分词、词性标注和命名实体识别。其中,命名实体识别是其中的一种任务。
Pix2Pix是一种基于条件生成对抗网络的深度学习图像转换模型,可以实现多种图像之间的转换,如语义/标签到真实图片、灰度图到彩色图等。该模型由Phillip I...
基于denoising diffusion probabilistic model (DDPM)的扩散模型,该模型已在图像/音频/视频生成领域取得显著成果。目前...
DCGAN是GAN的扩展,使用卷积和转置卷积层来分别构建判别器和生成器。它由Radford等人提出,判别器包括卷积层、BatchNorm层和LeakyReLU激...
CycleGAN是一种循环对抗生成网络,用于实现在没有配对示例的情况下学习将图像从一个域转换到另一个域的方法。它的重要应用领域是域迁移,即图像风格迁移。与之前的...
MobileNet是2017年由Google团队提出的轻量级CNN网络,专注于移动端、嵌入式或IoT设备。它使用深度可分离卷积的思想来减小模型参数与运算量,同时...
K近邻算法是一种用于分类和回归的非参数统计方法,通过计算样本与训练样本的距离,找出最接近的k个样本进行投票来确定分类结果。算法的基本要素包括K值、距离度量和分类...
MusicGen是基于单个语言模型(LM)的音乐生成模型,使用文本描述或音频提示生成高质量的音乐样本。它基于Transformer结构,包括文本编码器模型和音频...
自注意结构模型的发展,特别是Transformer模型的出现,极大推动了自然语言处理模型的发展。Transformers的计算效率和可扩展性使其能够训练具有超过...
SSD是一种单阶段目标检测算法,通过卷积神经网络进行特征提取,并在不同的特征层进行检测输出,实现多尺度检测。它采用了anchor的策略,预设不同长宽比例的anc...
ShuffleNetV1是一种计算高效的CNN模型,旨在在移动端利用有限的计算资源达到最佳的模型精度。其设计核心是引入了Pointwise Group Conv...
数据库的索引是经在项目中常常使用到的,但索引是吧双刃剑,提高了查询但是也拖慢了修改的速度。
图像分类是计算机视觉应用中最基础的一种,属于有监督学习类别。它的任务是给定一张图像,判断图像所属的类别,比如猫、狗、飞机、汽车等等。本章将介绍使用ResNet5...
暂未填写学校和专业
暂未填写个人网址