暂无搜索历史
现有的 DST 模型要么 忽略跨对话回合的时间特征依赖关系 ,要么 未能在对话中显式地建模时间状态依赖关系。
大多数现有的方法都在单个领域上独立训练 DST,而忽略了跨领域之间的信息的有效共享。
多域对话以及开放词典设置使得对话状态追踪标的异常复杂。在本文中,作者充分利用了多种 拷贝机制 来填充槽值。一个槽的填充依赖于以下三种拷贝机制之一:
我们的工作最类似于 TRADE,并通过提出自我和交叉注意力机制来捕捉位置和历史相关性。特别是,本文使用交叉注意在不同语义级别上的上下文和槽之间的模型关系...
Frame-based 的状态表示在现代面向任务的对话系统中被广泛应用,以建模用户的意图和插槽值。然而,域本体的固定设计使得很难扩展到新的服务和 API...
现有的方法利用 BERT 编码器和基于拷贝的 RNN 解码器,其中编码器预测状态操作,并由解码器生成新的插槽值。然而,在这种堆叠的编码器 - 解码器结构...
现有的方法通常将以前的对话状态与对话历史连接作为编码器的输入。它们依赖于编码器的自我注意机制来连接其中的 token。然而,编码器可能会注意到虚假的联系...
为了建模槽间关系,本文提出了一种新的混合体系结构,它通过来自图注意网络的表示来增强 GPT-2,从而允许对槽值进行因果的、顺序的预测。模型体系结构捕获跨...
概要 问题动机 以往的 DST 方法通常都是输出一个对所有槽值的预测概率分布,使得模型无法预测 unseen 的槽值。这篇文章的作者以不同角度看待 DST ...
大千世界,并非一切事物都可以进行精确的计算,都可以用是非来衡量那么简单。19 实际爱因斯坦与波尔的辩论的结局就是:上帝他老人家也是个赌徒,我们所处的客观世界充...
(2) 将待证结论否定得:\neg P(C) (3) 将谓词公式集 {P(A) \vee P(B)\vee P(C),P(A) \wedge \neg P(B)...
归结法的基本原理是采用反证法(也称反演推理法)将待证明的表达式(定理)转换成为逻辑公式(谓词公式),然后再进行归结,归结能够顺利完成,证明原公式(定理)是正确的...
(1) 已知前提 F 用谓词公式表示并化为子句集 S (2) 把待求解的问题 Q 用谓词公式表示,并否定 Q, 在与 ANSWER 构成析取式 (\neg Q ...
真值: 真,假 命题分类: 真命题、假命题、简单命题(原子命题)、复合命题 命题公式:
步骤 | 公式 | 理由 :-|:-:|:- 1 | \forall x(F(x)\rightarrow G(x)) | 前提引入 2 | F(c)\right...
如: 小明是个小学生 其中,小明 就是个体词, 是个小学生 就是谓词, 说明了客体的性质。 再如: 6 大于 5 其中 6 与 5 为个体词,大于 为谓词,说...
def: 设 A 和 B 是两个命题公式,当且仅当 A\rightarrow B 是 重言式 时称由 A 可推出 B , 或 B 是前提 A 的结论,记为:A\...
在 JDK 的 ThreadPoolExecutor 线程池中用一个原子整型来维护线程池的两个状态参数:
到目前为止,我们讨论的都是只有一个实数输入的模型。但实际情况要复杂的多,因此,如何处理多维输入是个非常重要的问题。
前面我们讨论的神经网络的层数都不会很大,但是对于一些深层的神经网络来说,训练它将会变得非常困难。其中一个原因是对于深层神经网络其越接近输入的层越有可能出现梯...
暂未填写公司和职称
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市