暂无搜索历史
策略新增就是,在不改变已有策略的基础上(保持不变)额外增加新的策略,来达到策略调优的目的,一般应用在D类的收紧策略中。
2)微观层面:对某个维度的客群(非整体)进行策略收紧,以达到优化策略效用的目的,具体方法包括了策略收紧、策略替换、策略新增。
广义理解上等同于做A类调优,涵盖各类调优方法。狭义理解上,是决策流程中的一个回捞动作,或者回捞节点,如下图所示。
风控策略开发上线后并不是一成不变的,它会受业务目标、市场变化、数据质量效果等很多方面的影响,比如:
本篇更新策略篇的规则集性能测算及Python实操,内容选自《100天风控专家》第57期。
基于经验累积分布的离群值检测(ECOD)是一种直观的方法,通过测量罕见事件在分布中的位置来识别异常值。
在许多情况下,机器学习模型比传统线性模型更受欢迎,因为它们具有更好的预测性能和处理复杂非线性数据的能力。然而,机器学习模型的一个常见问题是它们缺乏可解释性。例如...
在这篇文章中,我们介绍多项式朴素贝叶斯分类器是如何工作的,然后使用scikit-learn作为实际工作的示例来介绍如何使用。
虽然已有有很多关于特征选择的方法,但大多数是基于传统机器学习算法,或者是选择特征用于训练传统机器学习算法。
信贷风控领域中,经常用到账龄Vintage报表,这是入门初学者的难点之一,因为它涉及到用户还款、逾期等多种行为以及业务上的多种统计口径,因此很多朋友一直无法将逻...
上一篇我们介绍了决策树节点信息更新的方法风控规则的决策树可视化(升级版),以辅助我们制定风控规则,可视化的方法比较直观,适合做报告展示,但分析的时候效果没那么高...
当我们拿到时序数据后,首先要进行平稳性和纯随机性的检验,这两个重要的检验是时间序列的预处理。根据检验的结果可以判断出序列属于什么类型,然后对症下药使用相应的分析...
如今,熟练使用像 Keras、TensorFlow 或 PyTorch 之类的专用框架和高级程序库后,我们不用再经常费心考虑神经网络模型的大小,或者记住激活函数...
我们说时间序列可以被预测,主要基于以下事实:我们可以部分掌握影响该时间序列的因素的变化情况。换句话说,对时间序列进行预测,其实就是利用各种理论和工具,对观察到的...
数分小伙伴们都知道,SQL中的case when语句非常好用,尤其在加工变量的时候,可以按照指定的条件的进行赋值,并且结合其他嵌套用法还可以实现非常强大的功能。
klib提供了一系列非常易于应用的函数,具有合理的默认值,几乎可以用在任何DataFrame上,用于评估数据质量、获得灵感、执行数据清洗和可视化,从而更轻便、更...
人工智能的发展速度超过以往任何时期,这一现象令人振奋。然而,快速变化可能导致迷失方向。在这种情况下,遵循杰夫·贝佐斯(Jeff Bezos)的建议是非常有益的,...
Jupyter Notebook(前身为IPython Notebook)是一种开源的交互式计算和数据可视化的工具,广泛用于数据科学、机器学习、科学研究和教育...
该项目主要对某平台用户消费行为进行画像分析,通过pandas的灵活使用,对月销量、客户复购率、回购率、客户分层、高质量客户、留存率、消费间隔等进行多维度分析。以...
大家好,我是东哥。本篇继续分享风控的内容,关于如何用python实现vintage报表及可视化图的实战。
暂未填写学校和专业