暂无搜索历史
Google股票数据集是使用R中的Quantmod软件包从Yahoo Finance获得的。
本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测(点击文末“阅读原文”获取完整代码数据)。
本文用 R 编程语言极值理论 (EVT) 以确定 10 只股票指数的风险价值(和条件 VaR)(点击文末“阅读原文”获取完整代码数据)。
本文旨在帮助0基础或只有简单编程基础的研究学者,通过 AI 的提示词工程,使用 R 语言完成元分析,包括数据处理、模型构建、评估以及结果解读等步骤(点击文末“阅...
因此,我们使用神经网络来解决分类问题。通过分类,我们指的是按类别对数据进行分类的分类。例如,水果可分为苹果,香蕉,橙等。
我们常说的中药挖掘,一般是用药挖掘,还有穴位的挖掘,主要是想找出一些用药的规律(点击文末“阅读原文”获取完整代码数据)。
本论文旨在为对空间建模感兴趣的研究人员客户提供使用R-INLA进行空间数据建模的基础教程。通过对区域数据和地统计(标记点)数据的分析,介绍了如何拟合简单模型、构...
指数分布是泊松过程中事件之间时间的概率分布,因此它用于预测到下一个事件的等待时间,例如,您需要在公共汽车站等待的时间,直到下一班车到了。
在空间数据分析领域,准确的模型和有效的工具对于研究人员至关重要。本文为区域数据的贝叶斯模型分析提供了一套完整的工作流程,基于Stan这一先进的贝叶斯建模平台构建...
在环境流行病学研究中,理解空间数据的特性以及如何通过合适的模型分析疾病的空间分布是至关重要的。本文主要介绍了不同类型的空间数据、空间格点过程的理论,并引入了疾病...
金融市场的波动性一直是投资者和决策者关注的焦点之一。为了应对市场波动的风险,套保成为了一种重要的金融手段。
潜在类别混合模型假设总体具有异质性,由 GG 个潜在类别组成。在多变量的情况下,潜在类别是根据 KK 个纵向结果来定义的,从而形成 GG 个组,每个组的特征由 ...
在数据分析领域,当我们面对一组数据时,通常会有已知的分组情况,比如不同的治疗组、性别组或种族组等(点击文末“阅读原文”获取完整代码数据)。
本文围绕基于TensorFlow实现的神经网络对抗训练域适应方法展开研究。详细介绍了梯度反转层的原理与实现,通过MNIST和Blobs等数据集进行实验,对比了不...
本文主要探讨了如何利用大语言模型(LLMs)进行股票分析。通过使用提供的股票市场和金融新闻获取数据,结合Python中的相关库,如Pandas、langchai...
在统计建模过程中,经常会遇到空间自相关性的问题。空间自相关性是指相近位置的观测值往往比远离位置的观测值更相似。在尝试估计参数或进行预测时,空间自相关性可能会导致...
我们可以尝试一个非常简单的模型,其中日期Y_t的消耗量是时间,温度(以多项式形式表示)以及工业生产指数IPI_t的函数。
从区位特征、房屋属性和交易指标3个角度,选取包括所属区域、建筑面积、楼层高度、周边银行数量、学校数量、电影院数量等在内的多维度特征,帮助客户来预测二手房的挂牌价...
建立重庆市经济指标发展体系,以重庆市一小时经济圈作为样本,运用因子分析方法进行实证分析,在借鉴了相关评价理论和评价方法的基础上,本文提取出经济规模、人均发展水平...
本文显示了如何基于潜在的ARMA-GARCH模型(当然也涉及更广泛意义上的QRM)来拟合和预测风险价值(VaR)。
暂未填写技能专长
暂未填写学校和专业