暂无搜索历史
时间序列异常检测(AD)在 Web 系统中扮演着至关重要的角色。各种 Web 系统依赖时间序列数据来实时监控和识别异常,并启动诊断和修复程序。近年来,由于具有出...
交通预测旨在准确预测城市未来的交通流动模式,需要同时考虑时间与空间维度。但是,分布偏移现象是该领域的一个主要难题,因为现有模型在遇到与训练数据分布差异显著的测试...
在交通和能源管理等现实场景中,常会遇到大量具有缺失值、噪声和不规则采样模式的时间序列数据。尽管目前已经提出了许多插值方法,但大多数倾向于在局部范围内运行,这涉及...
用机器学习做时间序列异常检测 (TAD) 受到有缺陷的评估指标、不一致的基准测试、缺乏模型选择适当性论证的困扰。
气候变化加剧了河流洪水,其发生频率和强度均前所未有。近日的洞庭湖决堤新闻牵动人心,那时间序列技术能否帮助提高洪水预测的准确度呢?ICML 2024 中有一篇相关...
城市时空预测对于明智的决策至关重要,例如交通管理、资源优化和应急响应。尽管预训练自然语言模型取得了显著突破,使一个模型能够处理多种任务,但时空预测的通用解决方案...
时间序列数据在各个领域都普遍存在,使得时间序列分析变得至关重要。传统的时间序列模型是任务特定的,具有单一的功能和有限的泛化能力。最近,大型语言基础模型揭示了它们...
深度学习在多变量时间序列预测(MTSF)领域取得了显著进展。尽管现有的方法大多依赖于单一模态的时间序列输入进行训练,但近期基于大语言模型(LLMs)的跨模态时间...
多变量时间序列预测在金融、交通管理、能源和医疗保健等多个领域中扮演着至关重要的角色。最近的研究强调了通道独立性在抵抗分布漂移方面的优势,但忽视了通道间的相关性,...
本文介绍一篇来自香港大学、北京大学、南洋理工大学、清华大学等8所学校及企业联合发布的综述工作。该综述考虑到时空数据的显著增长和多样性,重点关注将生成技术整合到时...
目前,机器学习和深度学习算法(ML&DL)已被广泛应用于股票趋势预测,并取得了显著进展。然而,这些方法未能为预测提供理由,缺乏可解释性和推理过程。此外,它们无法...
在过去的十年里,深度学习在时间序列预测方面取得了显著进展。然而,现有的方法主要集中于一维时间序列的时间变化建模,忽略了时间序列中内在的复杂周期性。这种复杂性使得...
时序数据广泛存在于零售、金融、制造业、医疗等多个领域,其中时序预测应用对于决策制定有着重要的意义。尽管深度学习方法在时序预测中取得了巨大进展,但其依旧遵循传统机...
本文介绍一篇来自牛津大学、莫纳什大学等12家机构联合发表的一篇综述研究工作。这篇综述文章深入探讨了扩散模型在时间序列和时空数据中的应用。扩散模型作为一种强大的工...
时间序列出现在经济、交通、健康和能源等多个领域,对未来值的预测具有许多重要应用。因此,人们提出了许多预测方法。为了确保研究的进展,有必要以全面和可靠的方式对这些...
无处不在的缺失值导致多元时间序列数据只能部分观测,破坏了时间序列的完整性,阻碍了有效的时间序列数据分析。近年来,深度学习插补方法在提升损坏时间序列数据质量方面取...
时间序列分析是一个重要领域,涵盖从天气预报和到使用心电图检测不规则心跳,再到识别异常软件部署等一系列广泛应用。
电力价格预测在现代电力系统中扮演着至关重要的角色。多年来,电力价格预测(EPF)的技术已经取得了显著的进展,其中机器学习和人工智能的最新发展发挥了引领作用。但在...
机器学习模型在广泛的股票预测任务中表现出了令人瞩目的有效性和效率。然而,数据稀缺性所带来的固有挑战,包括低信噪比(SNR)和数据同质性,对准确预测构成较大挑战。
鉴于模态和任务目标之间的共性,大语言模型(LLM)自然可以作为时间序列的基础模型。然而,先前的方法可能忽视了时间序列与自然语言对齐的一致性,导致未能充分利用LL...
暂未填写公司和职称
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市