前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LangChain基础知识入门

LangChain基础知识入门

作者头像
@小森
发布2024-06-10 08:22:52
1240
发布2024-06-10 08:22:52
举报
文章被收录于专栏:xiaosenxiaosen

LangChain的介绍和入门

1 什么是LangChain

LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。LangChain目前有两个语言的实现:Python和Node.js


我们从两个方面全面介绍LangChain:一个是LangChain组件的基本概念和应用;另一个是LangChain常见的使用场景。


2 LangChain主要组件

一个LangChain的应用是需要多个组件共同实现的,LangChain主要支持6种组件:

  • Models:模型,各种类型的模型和模型集成,比如GPT-4
  • Prompts:提示,包括提示管理、提示优化和提示序列化
  • Memory:记忆,用来保存和模型交互时的上下文状态
  • Indexes:索引,用来结构化文档,以便和模型交互
  • Chains:链,一系列对各种组件的调用
  • Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止

2.1 Models

现在市面上的模型多如牛毛,各种各样的模型不断出现,LangChain模型组件提供了与各种模型的集成,并为所有模型提供一个精简的统一接口。

LangChain目前支持三种类型的模型:LLMs、Chat Models(聊天模型)、Embeddings Models(嵌入模型).

  • LLMs: 大语言模型接收文本字符作为输入,返回的也是文本字符.
  • 聊天模型: 基于LLMs, 不同的是它接收聊天消(一种特定格式的数据)作为输入,返回的也是聊天消息.
  • 文本嵌入模型: 文本嵌入模型接收文本作为输入, 返回的是浮点数列表.

LangChain支持的三类模型,它们的使用场景不同,输入和输出不同,开发者需要根据项目需要选择相应。


2.1.1 LLMs (大语言模型)

LLMs使用场景最多,常用大模型的下载库:https://huggingface.co/models:

接下来我们以GPT模型为例, 使用该类模型的组件:

  • 第一步:安装必备的工具包:langchain和openai
代码语言:javascript
复制
pip install openai==0.28
pip install langchain

注意,在使用openai模型之前,必须开通OpenAI API服务,需要获得API Token。

  • 第二步:申请API Token
  • 第三部:代码实现
代码语言:javascript
复制
# 导入OpenAI模型
from langchain.llms import OpenAI
import os
os.environ["OPENAI_API_KEY"] = "你的OpenAI API token"
llm = OpenAI(model_name="text-davinci-003", n=2, temperature=0.3)
llm("给我讲一个笑话")
# 答案:一个猴子去河里洗澡,洗完后他看见自己的影子,他觉得自己太瘦了,于是他又把头放进河里洗了一遍!

# 使用generate方法可以同时接收多个输入,并且返回token使用信息
llm.generate(["给我讲一个故事", "给我讲一个笑话"])
# 答案:# generations=[
#   [Generation(text='\n\n一个叫玛丽的小女孩,有一只叫毛毛的小猫。\n\n每天晚上,玛丽都会和毛毛一起玩耍,一起跳舞,一起唱歌,一起玩游戏。\n\n有一天,玛丽和毛毛一起去海边玩,突然,毛毛被一只海鸥抓走了。玛丽非常伤心,她跑到海边哭了起来,哭着喊着毛毛的', 
#       generation_info={'finish_reason': 'length', 'logprobs': None}),
#     Generation(text='\n\n一个叫小明的男孩,他很喜欢探险。有一天,他和他的朋友们一起去森林里玩,突然,他发现一个洞穴,他非常好奇,于是他决定去看看洞穴里面到底有什么。\n\n他走进洞穴,里面黑暗而又潮湿,他继续前行,突然,他看到一只大老虎,它正在吃一只小兔子。', 
#       generation_info={'finish_reason': 'length', 'logprobs': None})], 
#   [Generation(text='\n\n两个熊在森林里走,一个熊说:“嘿,你知道为什么树林里没有路吗?”另一个熊回答:“不知道,为什么?”第一个熊说:“因为它们都在绕树林跑!”', generation_info={'finish_reason': 'stop', 'logprobs': None}), Generation(text='\n\n两个熊在森林里拔萝卜,一个熊拔出一个萝卜,另一个熊说:“你拔的太慢了,我拔的快一点!”', 
#       generation_info={'finish_reason': 'stop', 'logprobs': None})]
2.1.2 Chat Models (聊天模型)

聊天消息包含下面几种类型,使用时需要按照约定传入合适的值:

  • AIMessage: 用来保存LLM的响应,以便在下次请求时把这些信息传回给LLM.
  • HumanMessage: 发送给LLMs的提示信息,比如“实现一个快速排序方法”.
  • SystemMessage: 设置LLM模型的行为方式和目标。你可以在这里给出具体的指示,比如“作为一个代码专家”,或者“返回json格式”.
  • ChatMessage: ChatMessage可以接收任意形式的值,但是在大多数时间,我们应该使用上面的三种类型.

LangChain支持的常见聊天模型有:

模型

描述

ChatOpenAI

OpenAI聊天模型

AzureChatOpenAI

Azure提供的OpenAI聊天模型

PromptLayerChatOpenAI

基于OpenAI的提示模版平台

举例说明:

代码语言:javascript
复制
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)
import os
os.environ["OPENAI_API_KEY"] = "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"

chat = ChatOpenAI(temperature=0)

messages = [
        SystemMessage(content="返回json object,不要纯文本,按照每项参数拆分,不要说明和解释信息"),
        HumanMessage(content="告诉我model Y汽车的尺寸参数")
]

print(chat(messages))
# 答案:# content='{\n "车长": "4,750 mm",\n "车宽": "1,921 mm",\n "车高": "1,624 mm",\n "轴距": "2,890 mm",\n "最小离地间隙": "162 mm",\n "行李箱容积": "1,900 L"\n}' additional_kwargs={} example=False
2.1.3 提示模板

在上面的例子中,模型默认是返回纯文本结果的,如果需要返回json格式,需要不断优化SystemMessage。那么有什么简单的方式快速让模型返回想要的数据呢?就是提示模版。

提示模板就是把一些常见的提示整理成模板,用户只需要修改模板中特定的词语,就能快速准确地告诉模型自己的需求。我们看个例子:

第一步:导入依赖

代码语言:javascript
复制
from langchain.chat_models import ChatOpenAI
from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

第二步:实现提示模板:

代码语言:javascript
复制
system_template="你是一个把{input_language}翻译成{output_language}的助手"
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
messages = chat_prompt.format_prompt(input_language="英语", output_language="汉语", text="I love programming.")

print(messages)
#messages=[SystemMessage(content='你是一个把英语翻译成汉语的助手', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={}, example=False)]
chat = ChatOpenAI(temperature=0)

print(chat(messages.to_messages()))

# content='我喜欢编程。' additional_kwargs={} example=False
2.1.4 Embeddings Models(嵌入模型)

Embeddings Models特点:将字符串作为输入,返回一个浮动数的列表。在NLP中,Embedding的作用就是将数据进行文本向量化。

Embeddings Models可以为文本创建向量映射,这样就能在向量空间里去考虑文本,执行诸如语义搜索之类的操作,比如说寻找相似的文本片段。

接下来我们以一个OpenAI文本嵌入模型的例子进行说明:

代码语言:javascript
复制
from langchain.embeddings import OpenAIEmbeddings
open_embed = OpenAIEmbeddings()
text = "这是一个测试文档。"

query_result = open_embed.embed_query(text)
doc_result = open_embed.embed_documents([text])

print(query_result)
# [-0.009422866627573967, 0.004315766040235758, 0.002380653750151396,  ...]

上述代码中,我们分别使用了两种方法来进行文本的向量表示,他们最大不同在于:embed_query()接收一个字符串的输入,而embed_documents可以接收一组字符串。

LangChain集成的文本嵌入模型有:

  • AzureOpenAI、Cohere、Hugging Face Hub、OpenAI、Llama-cpp、SentenceTransformers
2.2 Prompts

Prompt是指当用户输入信息给模型时加入的提示,这个提示的形式可以是zero-shot或者few-shot等方式,目的是让模型理解更为复杂的业务场景以便更好的解决问题。

提示模板:如果你有了一个起作用的提示,你可能想把它作为一个模板用于解决其他问题,LangChain就提供了PromptTemplates组件,它可以帮助你更方便的构建提示。

zero-shot提示方式:

代码语言:javascript
复制
from langchain import PromptTemplate
from langchain.llms import OpenAI

template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"

prompt = PromptTemplate(
    input_variables=["lastname"],
    template=template,
)

prompt_text = prompt.format(lastname="王")
# result: 我的邻居姓王,他生了个儿子,给他儿子起个名字

# 调用OpenAI
llm = OpenAI(temperature=0.9)
print(llm(prompt_text))

# 叫王爱慕。

few-shot提示方式:

代码语言:javascript
复制
from langchain import PromptTemplate, FewShotPromptTemplate
from langchain.llms import OpenAI

examples = [
    {"word": "开心", "antonym": "难过"},
    {"word": "高", "antonym": "矮"},
]

example_template = """
单词: {word}
反义词: {antonym}\\n
"""

example_prompt = PromptTemplate(
    input_variables=["word", "antonym"],
    template=example_template,
)

few_shot_prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    prefix="给出每个单词的反义词",
    suffix="单词: {input}\\n反义词:",
    input_variables=["input"],
    example_separator="\\n",
)

prompt_text = few_shot_prompt.format(input="粗")
print(prompt_text)

# 给出每个单词的反义词
# 单词: 开心
# 反义词: 难过

# 单词: 高
# 反义词: 矮

# 单词: 粗
# 反义词:

# 调用OpenAI
llm = OpenAI(temperature=0.9)
print(llm(prompt_text))

# 细

2.3 Chains(链)

在LangChain中,Chains描述了将LLM与其他组件结合起来完成一个应用程序的过程.

针对上一小节的提示模版例子,zero-shot里面,我们可以用链来连接提示模版组件和模型,进而可以实现代码的更改:

代码语言:javascript
复制
from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain
# 定义模板
template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"

prompt = PromptTemplate(
    input_variables=["lastname"],
    template=template,
)
llm = OpenAI(temperature=0.9)

chain = LLMChain(llm = llm, 
                  prompt = prompt)
# 执行链
print(chain.run("王"))
# 可以叫王子,也可以叫小王或者小王子等。。

如果你想将第一个模型输出的结果,直接作为第二个模型的输入,还可以使用LangChain的SimpleSequentialChain, 代码如下:

代码语言:javascript
复制
from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain, SimpleSequentialChain
# 创建第一条链
template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"

first_prompt = PromptTemplate(
    input_variables=["lastname"],
    template=template,
)
llm = OpenAI(temperature=0.9)

first_chain = LLMChain(llm = llm, prompt = first_prompt)

# 创建第二条链
second_prompt = PromptTemplate(
    input_variables=["child_name"],
    template="邻居的儿子名字叫{child_name},给他起一个小名",
)

second_chain = LLMChain(llm=llm, prompt=second_prompt)


# 链接两条链 
overall_chain = SimpleSequentialChain(chains=[first_chain, second_chain], verbose=True)

# 执行链,只需要传入第一个参数
catchphrase = overall_chain.run("王")
2.4 Agents (代理)

在 LangChain 中 Agents 的作用就是根据用户的需求,来访问一些第三方工具(比如:搜索引擎或者数据库),进而来解决相关需求问题。

为什么要借助第三方库?

  • 因为大模型虽然非常强大,但是也具备一定的局限性,比如不能回答实时信息、处理数学逻辑问题仍然非常的初级等等。因此,可以借助第三方工具来辅助大模型的应用。

几个重要的概念:

代理:

  • 负责控制整段代码的逻辑和执行,代理暴露了一个接口,用来接收用户输入,并返回AgentAction或AgentFinish。
  • AgentAction决定使用哪个工具
  • AgentFinish意味着代理的工作完成了,返回给用户结果。

工具:

  • 第三方服务的集成,比如谷歌、bing等等

工具包:

  • 一些集成好了代理包,比如create_csv_agent 可以使用模型解读csv文件。
  • 模型解决csv文件示例:
代码语言:javascript
复制
from langchain.agents import create_csv_agent
from langchain.llms import OpenAI
agent = create_csv_agent(OpenAI(temperature=0), 'data.csv', verbose=True)
agent.run("一共有多少行数据?")

代理执行器:

  • 负责迭代运行代理的循环,直到满足停止的标准。

现在我们实现一个使用代理的例子:假如我们在北京,想让大语言模型告诉我们明天穿什么衣服,由于大语言模型不知道明天的天气,我们借助于serpapi 来查询天气,并传递给模型,代码如下:

代码语言:javascript
复制
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

agent.run("明天在北京穿什么衣服合适?")

要注意的是,运行这个示例需要申请serpapi token,并且设置到环境变量SERPAPI_API_KEY ,然后安装依赖包google-search-results

LangChain支持的工具如下:

工具

描述

Bing Search

Bing搜索

Google Search

Google搜索

Google Serper API

一个从google搜索提取数据的API

Python REPL

执行python代码

Requests

执行python代码

2.5 Memory

大模型本身不具备上下文的概念,它并不保存上次交互的内容,ChatGPT之所以能够和人正常沟通对话,因为它进行了一层封装,将历史记录回传给了模型。

因此 LangChain 也提供了Memory组件, Memory分为两种类型:短期记忆和长期记忆。短期记忆一般指单一会话时传递数据,长期记忆则是处理多个会话时获取和更新信息。

目前的Memory组件只需要考虑ChatMessageHistory。举例分析:

代码语言:javascript
复制
from langchain.memory import ChatMessageHistory

history = ChatMessageHistory()
history.add_user_message("在吗?")
history.add_ai_message("有什么事?")

print(history.messages)

# [HumanMessage(content='在吗?', additional_kwargs={}), AIMessage(content='有什么事?', additional_kwargs={})]

和OpenAI结合,直接使用ConversationChain

代码语言:javascript
复制
from langchain import ConversationChain
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, verbose=True)
conversation.predict(input="小明有1只猫")
conversation.predict(input="小刚有2只狗")
conversation.predict(input="小明和小刚一共有几只宠物?")

如果要像chatGPT一样,长期保存历史消息,,可以使用messages_to_dict 方法

代码语言:javascript
复制
from langchain.memory import ChatMessageHistory
from langchain.schema import messages_from_dict, messages_to_dict

history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")

dicts = messages_to_dict(history.messages)

print(dicts)
# [{'type': 'human', 'data': {'content': 'hi!', 'additional_kwargs': {}}},
# {'type': 'ai', 'data': {'content': 'whats up?', 'additional_kwargs': {}}}]
# 读取历史消息
new_messages = messages_from_dict(dicts)

print(new_messages)
#[HumanMessage(content='hi!', additional_kwargs={}),
# AIMessage(content='whats up?', additional_kwargs={})]
2.6 Indexes (索引)

Indexes组件的目的是让LangChain具备处理文档处理的能力,包括:文档加载、检索等。注意,这里的文档不局限于txt、pdf等文本类内容,还涵盖email、区块链、视频等内容。

Indexes组件主要包含类型:

  • 文档加载器
  • 文本分割器
  • VectorStores
  • 检索器

2.6.1 文档加载器

文档加载器主要基于Unstructured 包,Unstructured 是一个python包,可以把各种类型的文件转换成文本。

文档加载器使用起来很简单,只需要引入相应的loader工具:

代码语言:javascript
复制
from langchain.document_loaders import TextLoader
loader = TextLoader('../state_of_the_union.txt', encoding='utf8')
documents = loader.load()

LangChain支持的文档加载器 (部分):

文档加载器

描述

CSV

CSV问价

JSON Files

加载JSON文件

Jupyter Notebook

加载notebook文件

Markdown

加载markdown文件

Microsoft PowerPoint

加载ppt文件

PDF

加载pdf文件

Images

加载图片

File Directory

加载目录下所有文件

HTML

网页

2.6.2 文档分割器

由于模型对输入的字符长度有限制,我们在碰到很长的文本时,需要把文本分割成多个小的文本片段。

文本分割最简单的方式是按照字符长度进行分割,但是这会带来很多问题,比如说如果文本是一段代码,一个函数被分割到两段之后就成了没有意义的字符,所以整体的原则是把语义相关的文本片段放在一起。

LangChain中最基本的文本分割器是CharacterTextSplitter ,它按照指定的分隔符(默认“\n\n”)进行分割,并且考虑文本片段的最大长度。我们看个例子:

代码语言:javascript
复制
from langchain.text_splitter import CharacterTextSplitter

# 初始字符串
state_of_the_union = "..."

text_splitter = CharacterTextSplitter(        
    separator = "\\n\\n",
    chunk_size = 1000,
    chunk_overlap  = 200,
    length_function = len,
)

texts = text_splitter.create_documents([state_of_the_union])

除了CharacterTextSplitter分割器,LangChain还支持其他文档分割器 (部分):

文档加载器

描述

LatexTextSplitter

沿着Latex标题、标题、枚举等分割文本。

MarkdownTextSplitter

沿着Markdown的标题、代码块或水平规则来分割文本。

TokenTextSplitter

根据openAI的token数进行分割

PythonCodeTextSplitter

沿着Python类和方法的定义分割文本。

2.6.3 VectorStores

VectorStores是一种特殊类型的数据库,它的作用是存储由嵌入创建的向量,提供相似查询等功能。我们使用其中一个Chroma 组件作为例子:

代码语言:javascript
复制
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

# pku.txt内容:<https://www.pku.edu.cn/about.html>
with open('./pku.txt') as f:
    state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)

embeddings = OpenAIEmbeddings()

docsearch = Chroma.from_texts(texts, embeddings)

query = "1937年北京大学发生了什么?"
docs = docsearch.similarity_search(query)
print(docs)

LangChain支持的VectorStore如下:

VectorStore

描述

Chroma

一个开源嵌入式数据库

ElasticSearch

ElasticSearch

Milvus

用于存储、索引和管理由深度神经网络和其他机器学习(ML)模型产生的大量嵌入向量的数据库

Redis

基于redis的检索器

FAISS

Facebook AI相似性搜索服务

Pinecone

一个具有广泛功能的向量数据库

2.6.4 检索器

检索器是一种便于模型查询的存储数据的方式,LangChain约定检索器组件至少有一个方法get_relevant_texts,这个方法接收查询字符串,返回一组文档。

代码语言:javascript
复制
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings

loader = TextLoader('../../../state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()

db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")

LangChain支持的检索器组件如下:

检索器

介绍

Azure Cognitive Search Retriever

Amazon ACS检索服务

ChatGPT Plugin Retriever

ChatGPT检索插件

Databerry

Databerry检索

ElasticSearch BM25

ElasticSearch检索器

Metal

Metal检索器

Pinecone Hybrid Search

Pinecone检索服务

SVM Retriever

SVM检索器

TF-IDF Retriever

TF-IDF检索器

VectorStore Retriever

VectorStore检索器

Vespa retriever

一个支持结构化文本和向量搜索的平台

Weaviate Hybrid Search

一个开源的向量搜索引擎

Wikipedia

支持wikipedia内容检索

3 LangChain使用场景

  • 个人助手
  • 基于文档的问答系统
  • 聊天机器人
  • Tabular数据查询
  • API交互
  • 信息提取
  • 文档总结

小结

主要对LangChain框架基础知识介绍,我们对LangChain有一个初步认识,了解LangChain的使用场景。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • LangChain的介绍和入门
    • 1 什么是LangChain
      • 2 LangChain主要组件
        • 2.1 Models
        • 2.2 Prompts
        • 2.3 Chains(链)
        • 2.4 Agents (代理)
        • 2.5 Memory
        • 2.6 Indexes (索引)
      • 3 LangChain使用场景
        • 小结
        相关产品与服务
        云数据库 Redis
        腾讯云数据库 Redis(TencentDB for Redis)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档