#include <Eigen/Dense>失败,#include "Eigen/Dense"成功的原因是因为两者的包含方式不同。
由于Eigen是一个第三方库,不属于系统标准库,所以使用尖括号<>包含方式无法找到该头文件,从而导致失败。而使用双引号""包含方式,可以告诉编译器在当前工作目录或指定的路径中查找该头文件,所以能够成功包含。
说明:本教程主要是对eigen官网文档做了一个简要的翻译,参考了eigen官网以及一些博主的技术贴,在此表示感谢。
Eigen是可以用来进行线性代数、矩阵、向量操作等运算的C++库,它里面包含了很多算法。。 简介 Eigen 是可以用来进行线性代数、矩阵、向量操作等运算的C++库,它里面包含了很多算法。当前(2023.1)最高 release 版本: 3.4.0 Eigen 采用源码的方式提供给用户使用,在使用时只需要包含Eigen的头文件即可进行使用。之所以采用这种方式,是因为Eigen采用模板方式实现,由于模板函数不支持分离编译,所以只能提供源码而不是动态库的方式供用户使用。 Eigen 的定位是矩阵运算,已经
(四)在vs的项目中点击“属性”——“C/C++”——“常规”——“附加包含目录” ,添加路径D:\library\eigen-3.3.4
项目Gitlab地址:https://gitlab.com/libeigen/eigen
2、平台 windows,linux 3、转载请注明出处: https://blog.csdn.net/qq_41102371/article/details/126319996
#Eigen的安装 下载Eigen以后直接引用头文件即可,需要的头文件如下 Eigen支持的编译器类型 GCC, version 4.4 and newer. MSVC (Visual Stud
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
Eigen是可以用来进行线性代数、矩阵、向量操作等运算的C++库,它里面包含了很多算法。它的License是MPL2。它支持多平台。
Eigendecomposition的概念可见https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
找到自己需要的版本下载,我下载的是3.3.9,箭头指向的 zip。 解压缩得到文件eigen-3.3.9,放到自己想放置的路径下(后面会引用此处的路径)。
Eigen是开源的C++线性代数库,常用在计算机图形学中。 有份英文的Eigen使用手册,简要整理一下
一.用来组织和重用代码的,之所以有这样一个东西,是因为人类可用的单词太少,哦不同的人写的程序不可能所有的变量都没有重名现象,如果两个人写的文件中出现同名的变量或函数,使用起来就有问题了。为了解决这个问题,引入了这个概念,通过使用 namespace xxx;你所使用的库函数或变量就在该名字空间中定义,就不会引起冲突了。
Eigen是一个高层次的C ++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。Eigen是一个开源库,从3.1.1版本开始遵从MPL2许可。
一个刚体在三维空间中的运动如何描述? 我们知道是由旋转加平移组成的,平移很简单,但是旋转有点麻烦。 三维空间的刚体运动的描述方式:旋转矩阵、变换矩阵、四元数、欧拉角。 刚体,不光有位置,而且还有姿态。相机可以看成是三维空间的一个刚体,位置指的就是相机在空间处于哪个地方?而姿态指的是相机的朝向(例如:相机位于(0, 0,0)点处,朝向正东方)但是这样去描述比较繁琐。
在数据科学领域,Python和R语言通常被视为主要的工具,用于数据分析和机器学习任务。然而,C++作为一种高性能的编程语言,也可以在这些领域中发挥重要作用。本文将介绍如何利用C++进行数据分析和机器学习,并探讨其在这些领域中的优势。
本系列文章为原创,转载请注明出处。 作者:Dongdong Bai 邮箱: baidongdong@nudt.edu.cn
一直对SLAM技术感兴趣,断断续续的研究过一段时间,这次又听了相关的讲座,啧(DJI自动驾驶的负责人,从0到1,应该算巨佬授课了)。总之就是一堆数学,编程就是个弟弟:
1.http://pointclouds.org/documentation/tutorials/compiling_pcl_windows.php#compiling-pcl-windows
对点云的操作可以直接应用变换矩阵,即旋转,平移,尺度,3D的变换就是要使用4*4 的矩阵,例如:
这篇论文跟上一篇的VGG论文一样,在深度学习领域同样的经典,在2015年的CVPR,该论文拿到了best paper候选的论文,在之后的PASCAL VOC2012,凡是涉及到图像语义分割的模型,都沿用了FCN的结构,并且这篇论文跟VGG的结构也很相似,区别只在于VGG最后的全连接层在FCN上替换为卷积层,因此在我们了解完VGG之后,再来了解FCN是很有意义的.这篇文章我们将对论文进行翻译,同时也是精读,希望读完之后能够有所收获,如果有所错误,也请大家指出.
牛顿法最突出的优点是收敛速度快,具有局部二阶收敛性,但是,基本牛顿法初始点需要足够“靠近”极小点,否则,有可能导致算法不收敛。
tensorflow自定义op,梯度 tensorflow 是 自动微分的,但是如果你不给它定义微分方程的话,它啥也干不了 在使用 tensorflow 的时候,有时不可避免的会需要自定义 op,官
这将自动生成一个呈矩形的点云,检测的特征点处在角落处,参数-m是必要的,因为矩形周围的区域观测不到,但是属于边界部分,因此系统无法检测到这部分区域的特征点,选项-m将看不到的区域改变到最大范围读取,从而使系统能够使用这些边界区域。
LAPACK 是用 Fortran 90 编写的,提供用于求解联立线性方程组、线性方程组的最小二乘解、特征值问题和奇异值问题的例程。还提供了相关的矩阵分解(LU、Cholesky、QR、SVD、Schur、广义 Schur),以及相关计算,例如 Schur 分解的重新排序和估计条件数。处理密集矩阵和带状矩阵,但不处理一般稀疏矩阵。在所有领域,都为单精度和双精度实数和复数矩阵提供了类似的功能。
粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。
OpenMVS是三维重建的一个成熟开源框架,综合重建效果和性能,该算法是目前MVS(Multi-View Stereo)相关的所有开源库中最好的一个。该算法的框架如下所示
LLE is inherently a non-linear dimensionality reduction strategy
这篇文章作为基础文章也是本文的学习和理解的过程,在将会给出更多的注释和“废话”帮助自己理解。同时有错误的话欢迎各位朋友留言指教。
好吧,虽然转载了别人的博客,那个步骤确实是我想要的,还挺详细,但是考虑到别人可能会将其删除等原因,还是自己写篇日志,记录下。(PS:弄这个东西搞了快3个月的时间,真的是这样。写这篇算是对自己三个月经历的总结,说多了都是泪)
矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式。
1:https://zhuanlan.zhihu.com/p/136143299 2:https://blog.csdn.net/stihy/article/details/52737723 3:参考文献:A Brief Description of the Levenberg-Marquardt Algorithm Implemened
目录 一:安装Eigen (1)安装 方式一、直接命令安装 方式二、源码安装: (2)移动文件 二:使用Eigen——旋转矩阵转换欧拉角 三:其他用法示例 简单记录下~~ Eigen是一个基于C++模板的开源库,支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。 官网:Eigen 一:安装Eigen (1)安装 方式一、直接命令安装 sudo apt-get install libeigen3-dev 方式二、源码安装: https://gitlab.com/libeigen/eigen/-
梯度下降不一定能够找到全局最优解,有可能是局部最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。
尽管 CMake 是跨平台的,在我们的项目中我们努力使源代码能够在不同平台、操作系统和编译器之间移植,但有时源代码并不完全可移植;例如,当使用依赖于供应商的扩展时,我们可能会发现有必要根据平台以略有不同的方式配置和/或构建代码。这对于遗留代码或交叉编译尤其相关,我们将在第十三章,替代生成器和交叉编译中回到这个话题。了解处理器指令集以针对特定目标平台优化性能也是有利的。本章提供了检测此类环境的食谱,并提供了如何实施此类解决方案的建议。
OpenCV 支持与 Eigen 之间的数据转化,本文记录方法。 数据转换 OpenCV 算子 cv -> eigen: cv2eigen() eigen -> cv: eigen2cv() 需要引入 : #include <opencv2/core/eigen.hpp> 官方文档:https://docs.opencv.org/4.5.5/d0/daf/group__core__eigen.html#ga1add06b744a69bc05e1e16a5eb20be3e 示例 转
工友在机器上面编译了好几天也失败了,后面又换了MAC(笑死M1的片子,开虚拟机编译)又是报错的一天。
在Mac中安装OpenCV3时,如果需要安装--with-contrib,则会报错,OpenCV 3的安装命令为:
看,这是C++调用Matlab画图的一段程序。暂时不想多解释了,有兴趣的话,看看下面的代码吧。
PCL1.9.1并没有支持vs2015版本的exe版本,然后需要下载PCL的源码重新自己CMake编译出vs2015版本的
Eigen是一个开源的C++库,主要用来支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。Eigen 目前(2022-04-17)最新的版本是3.4.0(发布于2021-08-18),除了C++标准库以外,不需要任何其他的依赖包。Eigen库的下载地址为:https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.zip
将/usr/local/lib/libDBoW3.a改为/usr/local/lib/libDBoW3.so!!!
安装环境为CENTOS6.8操作系统,pip安装tensorflow后提示GLIBC版本过低。考虑到升级GLIBC有一定的风险,所以决定使用编译安装的方式安装tensorflow。基本流程是按照这篇教程: http://www.jianshu.com/p/fdb7b54b616e/ 进行的,但是因为选择使用的版本有些不同,自己又遇到了一些坑。所以重新整理一下操作步骤。为了使安装步骤对操作系统影响最小,安装时不使用root账户以及sudo权限,而是使用了一个普通账户makeuser进行操作(少数步骤需要使用root操作)
其中P是对称正定矩阵。所以目标函数的全局最小值就是其极小值。在二维的情况下,目标函数的图像类似下面的图。这里大概有一个印象就好。
很多问题最终归结为一个最小二乘问题,如SLAM算法中的Bundle Adjustment,位姿图优化等等。求解最小二乘的方法有很多,高斯-牛顿法就是其中之一。
Heco是火币开放平台的公链基础设施,heco链智能合约dapp系统开发,未来将成为承载用户、资产和应用的基础平台。
computeSurfaceNormals() has finished in 0 s
二进制版的vtk第三方库不支持Qt,需要重新下载vtk并用cmake编译,注意要版本对应,这里我用pcl1.8.1,对应vtk8.0,在这里下载。
领取专属 10元无门槛券
手把手带您无忧上云