首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    小波去噪程序c语言,小波去噪c语言程序

    1、小波阈值去噪理论小波阈值去噪就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号.

    01

    在图像的傅里叶变换中,什么是基本图像_傅立叶变换

    大家好,又见面了,我是你们的朋友全栈君。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。”分析”二字,可以解释为深入的研究。从字面上来看,”分析”二字,实际就是”条分缕析”而已。它通过对函数的”条分缕析”来达到对复杂函数的深入理解和研究。从哲学上看,”分析主义”和”还原主义”,就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。”任意”的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 傅立叶变换在图像处理中有非常非常的作用

    01

    失真对编码性能的影响研究

    近几年来,视频流的技术环境发生了巨大的变化,互联网上的视频流量急剧增加。根据 Cisco 公司的报告的预测,视频流量将超过整个互联网使用量的 80%。这也使得人们对视频流和实时视频通信应用中的视频压缩的比特率与质量的权衡关系产生了更大的兴趣。然而这些编解码器在实际系统中的实际部署表明,还有其他考虑因素进一步限制了编解码器的性能,例如设备上的资源、云中的计算资源和 CDN(内容交付网络)中不同服务器之间的带宽。尤其是转码已经成为流媒体和通信生态系统的一个关键设备,使 Netflix、YouTube、Zoom、微软、Tiktok 和 Facebook 的视频应用成为可能。用户生成内容(UGC)的流媒体的一个主要问题是失真的影响,如噪音、曝光/光线和相机抖动。对于 UGC,这些失真通常会导致比特率提高,图片质量降低。

    03

    Nat.Commun | 使用深度计数自编码器对单细胞RNA序列去噪

    今天给大家介绍德国亥姆霍兹慕尼黑中心计算生物学研究所的Fabian J. Theis教授等人发表在Nature Communications上的一篇文章 “Single-cell RNA-seq denoising using a deep count autoencoder” 。单细胞RNA测序 (scRNA-seq) 使研究人员能够以细胞分辨率水平研究基因表达。然而,由于扩增和“dropout”事件产生的噪声可能会阻碍下游分析,因此需要针对越来越数量庞大却稀疏的scRNA-seq数据进行去噪。本文提出了一种深度计数自编码器网络 (DCA) 来去除scRNA-seq数据集的噪声。DCA考虑计数分布、数据的过分散和稀疏性,使用负二项噪声模型 (有或没有零膨胀) 捕获非线性基因-基因依赖关系。DCA模型与细胞的数量成线性关系,因此,可以应用于数百万个细胞的数据集。DCA改进了使用模拟和真实数据集的多种典型的scRNA-seq数据分析。DCA在数据插补的质量和速度上都优于现有的方法,增强了生物发现能力。

    02

    基于深度卷积神经网络的图像反卷积 学习笔记

    在本文中,我们提出了一种不基于物理或数学特征的自然图像反卷积方法,我们展示了使用图像样本构建数据驱动系统的新方向,这些图像样本可以很容易地从摄像机中生成或在线收集。 我们使用卷积神经网络(CNN)来学习反卷积操作,不需要知道人 为视觉效果产生的原因,与之前的基于学习的图像去模糊方法不同,它不依赖任何预处理。本文的工作是在反卷积的伪逆背景下,我们利用生成模型来弥补经验决定的卷积神经网络与现有方法之间的差距。我们产生一个实用的系统,提供了有效的策略来初始化网络的权重值,否则在卷积随机初始化训练过程中很难得到,实验证明,当输入的模糊图像是部分饱和的,我们的系统比之前的方法效果都要好。

    02

    人脑功能结构的年龄差异

    大脑的内在功能组织在成年后会发生变化。年龄差异在多个空间尺度上被观察到,从分布式大脑系统的模块化和全局分离的减少,到网络特异性的去分化模式。然而,我们尚不确定去分化是否会导致大脑功能随着年龄的增长发生不可避免的,局限性的经验依赖的整体变化。我们采用多方法策略在多个空间尺度上调查去分化。在年轻(n=181)和年老(n=120)的健康成年人中收集多回波(ME)静息态功能磁共振成像。在保留群体水平的脑区和网络标签的同时,实现了对个体变异敏感的皮层分割以用于每个被试的精确功能映射。ME-fMRI处理和梯度映射识别了全局和宏观网络的差异。多变量功能连接方法测试了微观尺度的连边水平差异。老年人表现出较低的BOLD信号维度,与整体网络去分化相一致。梯度基本上是年龄不变的。连边水平的分析揭示了老年人中离散的、网络特异的去分化模式,视觉和体感网络在功能连接内更为整合,默认和额顶控制网络表现出更强的连接,以及背侧注意网络与跨模态区域更为整合。这些发现强调了多尺度、多方法来表征功能性大脑老化结构的重要性。

    03
    领券