DDQN (Deep Q-Network):
Actor Critic:
Actor Critic 的优势:
DDQN 的优势:
Actor Critic 的劣势:
DDQN 的劣势:
Actor Critic 的应用场景:
DDQN 的应用场景:
Actor Critic 常见问题:
DDQN 常见问题:
以下是一个简单的 Actor Critic 算法的伪代码示例:
# 初始化 Actor 和 Critic 网络
actor = ActorNetwork()
critic = CriticNetwork()
# 优化器
actor_optimizer = Adam(actor.parameters(), lr=0.001)
critic_optimizer = Adam(critic.parameters(), lr=0.005)
for episode in range(num_episodes):
state = env.reset()
done = False
while not done:
# 选择动作
action = actor.select_action(state)
# 执行动作并获取下一个状态和奖励
next_state, reward, done, _ = env.step(action)
# 计算 TD 误差
td_error = reward + gamma * critic(next_state) - critic(state)
# 更新 Critic
critic_loss = td_error ** 2
critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
# 更新 Actor
actor_loss = -critic(state).detach() * log(actor(state, action))
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
state = next_state
希望这些信息对你有所帮助!如果有更多具体问题,欢迎继续提问。
云+社区技术沙龙[第6期]
企业创新在线学堂
腾讯云GAME-TECH游戏开发者技术沙龙
腾讯云GAME-TECH游戏开发者技术沙龙
DB・洞见
企业创新在线学堂
实战低代码公开课直播专栏
2023数字化与现代化公益直播讲堂第70讲
实战低代码公开课直播专栏
云+社区沙龙online [国产数据库]
领取专属 10元无门槛券
手把手带您无忧上云