首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么BERT模型必须保持10%的掩码标记不变?

BERT模型必须保持10%的掩码标记不变是为了训练模型具有对上下文的理解能力和填充缺失信息的能力。

BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,它通过在大规模文本数据上进行无监督训练来学习单词的上下文表示。在训练BERT模型时,输入文本会被随机掩码(mask)一部分单词,然后模型需要预测这些被掩码的单词。为了保证模型能够有效地学习上下文信息和填充缺失信息的能力,必须保持一定比例的掩码标记不变。

具体来说,保持10%的掩码标记不变有以下几个原因:

  1. 避免模型过度依赖掩码标记:如果所有的掩码标记都被随机替换,模型可能会过度依赖这些标记来进行预测,而忽略了其他上下文信息。保持一定比例的掩码标记不变可以减少这种依赖性,使模型更好地学习上下文信息。
  2. 提供填充缺失信息的能力:保持一定比例的掩码标记不变可以让模型学会填充缺失信息的能力。在实际应用中,我们经常会遇到需要填充缺失信息的场景,例如问答系统中的问题回答、文本生成等。通过训练时保持一定比例的掩码标记不变,可以使模型具备更好的填充缺失信息的能力。
  3. 提高模型的泛化能力:保持一定比例的掩码标记不变可以增加模型的泛化能力。在实际应用中,我们往往会遇到一些未知的单词或短语,模型需要具备对这些未知信息的处理能力。通过训练时保持一定比例的掩码标记不变,可以使模型更好地处理未知信息,提高其泛化能力。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云自然语言处理(NLP):https://cloud.tencent.com/product/nlp
  • 腾讯云机器学习平台(Tencent Machine Learning Platform):https://cloud.tencent.com/product/tmmp
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

BERT模型介绍

预训练任务:BERT预训练包括两个主要任务: 掩码语言模型(Masked Language Model, MLM):随机掩盖输入文本中一些词,然后让模型预测这些被掩盖词。...通常只需要在模型顶部添加一个简单分类层,然后使用有标签数据集进行训练。掩码语言模型(MLM):在MLM任务中,BERT模型随机选择输入序列中15%词进行掩盖。...这些掩盖词中,80%被替换为一个特殊[MASK]标记10%被替换为随机词,剩下10%保持不变模型目标是预测这些被掩盖词。...以下是一些主要BERT模型变体:RoBERTa:由Facebook提出,RoBERTa对BERT进行了改进,包括更大训练数据集、动态掩码、更长序列长度以及更充分训练时间。...TinyBERT:由华为提出,TinyBERT通过知识蒸馏方法将BERT模型压缩成更小版本,同时尽量保持原始模型性能。

24610

NLP预训练中mask方式总结

参考资料 一、为什么要mask 1.1 padding: 数据输入模型时候长短不一,为了保持输入一致,通过加padding将input转成固定tensor 如: 一句话:[1, 2, 3, 4, 5...——BERT 原文:训练数据中,被mask选中概率是15%,选中词,被[MASK]替换概率是80%,不变概率是10%,随机替换概率是10%。...给BERT加了知识图谱,加强了局部学习。BERT原先方式,只是从mask出现概率做填空。用knowledge level填空方式,把knowledge挖空,保证了模型学到关键知识。...基本级别掩码(Basic-Level Masking): 这里采用了和BERT完全相同掩码机制,在进行中文语料时,这里使用是字符级别的掩码。在这个阶段并没有加入更高级别的语义知识。...实体级别掩码(Entity-Level Masking): 在这个阶段,将句子中某些实体掩码掉,这样模型就有了学习更高级别的语义信息能力。

1.3K20
  • ICML2023 & 新加坡国立 | 一项关于 Transformer参数设置 深度研究

    掩码自动编码器可以缓解过度平滑问题」  直观地说,在掩码自动编码器框架(例如 BERT、BEiT)中,目标是根据未屏蔽令牌恢复屏蔽令牌。...这里假设掩码自动编码器训练可以缓解过度平滑问题,这可能是屏蔽自动编码器有助于扩大变压器规模原因。具体来说,序列标记任务要求模型从相邻未屏蔽标记中学习语义信息。...由于不同掩码令牌具有不同未屏蔽相邻令牌,因此未屏蔽令牌表示必须携带其相应且足够语义,以准确预测屏蔽令牌,这反过来又防止令牌表示变得相同。...总之可以推断,掩码自动编码器训练目标通过其对标记差异正则化有助于缓解过度平滑问题。 「掩码自动编码器为什么可以缓解过度平滑问题?」  本文通过傅里叶域分析进一步探讨了这种现象背后原因。...实验结果 1、「掩码自动编码器确实缓解了过度平滑问题」。如下图所示,由于过度平滑,ViT 余弦相似度沿着深度增加,然而,对于由掩码自动编码器框架预训练模型,余弦相似度沿深度保持恒定。

    66320

    Transformers词汇表

    输入ID 输入id通常是传递给模型作为输入唯一必需参数。它们是标记索引,标记数字表示构建将被模型用作输入序列。 每个tokenizer工作方式不同,但基本机制保持不变。...注意力掩码 注意掩码是将序列批处理在一起时使用可选参数。此参数向模型指示应该注意哪些标记,哪些不应该注意。...注意掩码是一个二进制张量,指示填充索引位置,以便模型不会注意它们。对于BertTokenizer,1表示应注意值,而0表示填充值。...[SEP]" 对于某些模型而言,这足以了解一个序列在何处终止以及另一序列在何处开始。但是,其他模型(例如BERT)具有附加机制,即段ID。标记类型ID是一个二进制掩码,用于标识模型不同序列。...某些模型(例如XLNetModel)使用由2表示附加标记。 位置ID 模型使用位置ID来识别哪个标记在哪个位置。与将每个标记位置嵌入其中RNN相反,转换器不知道每个标记位置。

    1.2K20

    Bert不完全手册7. 为Bert注入知识力量 Baidu-ERNIE & THU-ERNIE & KBert

    同样是AutoEncoder任务,实体还原和MLM任务主要有两个差异掩码差异:dAE采用5%随机实体掩码,15%同时对token和实体掩码,85%保持不变掩码策略还原差异:和token还原相比,实体还原采用了负采样逻辑...整体上dAE任务设计偏简单,首先是掩码部分和BERT只保留10%原始token相比,dAE85%概率都保留原始token;同时还原任务只使用当前句子实体作为候选,候选集较小。...至于为什么把任务调整更加简单,作者只简单说是因为token-entity对齐会存在一定error,不过我对这部分任务设计还是有些疑惑~有了解同学求解答ERNIE预训练过程使用了google BERT...核心就是让原始tokenPE保持不变,原始token之间交互不变,每个token只和自己知识进行交互。...Soft-PE就是保持原始句子位置编码不变,对于插入知识会从实体位置开始向后顺延,于是会存在重复PE,例如is在原始句子中位置id是3,CEO对应实体是TimCook位置是2,顺延后位置id

    36910

    理解BERT:一个突破性NLP框架综合指南

    谷歌BERT就是这样一个NLP框架。我敢说它可能是近代最有影响力一个(我们很快就会知道为什么)。 ? 毫不夸张地说,BERT极大地改变了NLP格局。...想象一下,使用一个在大型未标记数据集上训练单一模型,然后在11个单独NLP任务上获得SOTA结果。所有这些任务都需要fine-tuning。BERT是我们设计NLP模型一个结构性转变。...这就是为什么它学习第一和第二句话独特嵌入,以帮助模型区分它们。...BERT作者还提出了一些注意事项,以进一步改进这项技术: 为了防止模型过于关注一个特定位置或被掩盖标记,研究人员随机掩盖了15%单词 掩码字并不总是被掩码令牌[掩码]替换,因为[掩码]令牌在调优期间不会出现...因此,研究人员采用了以下方法: 80%情况下,单词被替换成带面具令牌[面具] 10%情况下,这些单词被随机替换 有10%时间单词是保持不变 2.

    1.1K30

    达观纪传俊:多模态文档LayoutLM版面智能理解技术演进

    MVLM和Bert掩码策略相似。...也是选择15%tokens进行预测,80%tokens用[MASK]标记替换这些被掩码tokens,10%tokens里用一个随机token替换,10%tokens还是用原先tokens。...在 MVLM 中,15% 文本标记被屏蔽,其中 80% 被特殊标记 [MASK] 替换,10% 被从整个词汇表中采样随机标记替换,10%保持原样。...02 遮罩语言模型在MLM预训练任务中,类似Bert,对30%文本token做掩码,但保留对应二维位置(布局信息),而掩码策略不是单字随机掩码,而是用松柏分布()采样跨度长度来进行掩码。...由于保持布局信息不变,这个目标有助于模型学习布局信息与文本和图像上下文之间对应关系。MLM训练目标模型目标是根据未被遮盖图文和布局信息还原文本中被遮盖词。

    97620

    机器学习理论 | 大型神经语言模型对抗训练

    ---- 2 初步工作 在本节中,我们使用BERT[2],基于Transformer神经语言模型代表,对语言模型预训练进行了快速概述。...然后将嵌入层输出传递给多层Transformer Encoder模块以生成文本/序列上下文表示。 2.3 自监督 BERT中关键创新点是使用掩码语言模型 (MLM) 进行自监督预训练。...在BERT和RoBERTa中,选择一个输入序列中15%token进行替换,其中被选中15%token中,随机80%被[MASK]替换,10%保持不变10%被词汇表中随机一个token替换。...以往在NLP中,对抗性攻击往往很简单,就是替换输入句子中几个单词,同时保持语义即可。...比如BERT预训练使用掩码token作为自监督标签,但在许多情况下,掩码单词可以被其他词所取代但同时能够形成完全合法文本。

    96330

    ICLR 2020 | 完胜 BERT,谷歌最佳 NLP 预训练模型开源,单卡训练仅需 4 天

    另一个则是掩码语言模型(MLM),例如:BERT,RoBERTa 和 ALBERT。这类模型它们分别预测输入中已被屏蔽少量单词内容。...右:掩码语言模型(例如 BERT)从左到右都使用上下文,但是对于每个输入仅预测一小部分单词新型预训练模型 ELECTRA。...预训练任务需要模型(即鉴别器)来确定原始输入中哪些标记已被替换或保持相同。...正是由于该模型二进制分类任务适用于每个输入单词,而非仅有少量掩码单词(在 BERT 样式模型中为 15%),因此,RTD 方法效率比 MLM 高。...这也解释了为什么 ELECTRA 只需更少示例,就可以达到与其它语言模型相同性能原因。 ? 从所有输入位置学习时,替换令牌检测可进行双向训练 其中,替换令牌来自生成器神经网络。

    1.3K31

    Transformers回顾 :从BERT到GPT4

    在 MLM 中,15% 令牌被屏蔽,80% 被 MASK 令牌替换,10% 被随机令牌替换,10% 保持不变模型会预测正确 令牌,而损失仅在这 15% 屏蔽令牌上计算。...为了加快训练速度,首先90%训练在序列长度为 128 个标记上进行,然后剩下10% 时间在 512 个标记上训练模型以获得更有效位置嵌入。...,匹配被移除,模型必须仅基于文本来预测实体; 在其他情况下,是正常。...6、XLNet Carnegie Mellon University / 2019 因为BERT训练过程存在问题: 在训练期间,损失计算仅计算掩码标记。...模型比教师模型小40%,速度快60%,并且在各种任务上保持了97%质量。 9、LaBSE Google / 2020 基于BERT多语言矢量化模型

    37310

    Bert模型也具备指令遵循能力吗?

    ,而BERT家族在大型生成模型兴起之前已推动了无数任务发展,并仍保持各种下游任务记录。...这样,我们只需要一个预训练BERT模型即可节省模型参数,并加速训练过程。然而,混合注意力机制首先需要获取最后一层源表示。我们必须在训练期间通过模型两次,导致训练效率降低。...此外,如图1所示,我们阻止每个源标记在注意力模块中访问目标序列,以保持与推理过程一致性,因为在推理中没有预先存在目标序列。...首先,在给定训练对 (X, Y) 中,我们均匀地掩盖1到L(目标长度)标记,采用CMLM(条件掩码语言模型方式,与BERT家族原始固定掩膜不同。...模型根据预测概率选择下一次迭代中特定掩码标记,具有最低概率标记将被掩码,并在新预测后更新其分数。此外,与传统从左到右自回归模型不同,在初始化完全掩码目标序列之前,我们应该获得目标长度。

    18410

    Shreya Gherani:BERT庖丁解牛(Neo Yan翻译)

    使用BERT模型有两个阶段:预训练阶段与微调阶段。在预训练阶段,模型基于未标记数据完成预先设置任务训练。在微调阶段,模型基于预训练权重初始化并着手面向下游任务。...掩蔽语言模型(Masked Language Modeling)-由于BERT使用双向Tramsformer和多层自注意力机制,为了训练出深度双向表示学习模型BERT会对输入标记某些百分比(论文中为...如同标准语言模型所操作,与遮蔽掩码标记所对应最终隐层向量被输入到词汇表上输出softmax函数中。...如果某一位置令牌(token)被选中了,(1)80%情况下被替换为[MASK]令牌(token);(2)10%情况下替换为随机令牌(token);(3)剩下10%情况保持不变。...这种标记在处理新词时候是非常棒,它有助于更好地表达复杂词汇。 BERT模型输入 BERT输入可以是单词序列中单个句子或句子对(例如,[问题、答案])。

    1.1K10

    【MIT博士论文】自监督学习语音处理

    提出了两种自监督算法,一种基于"未来预测"思想,另一种基于"从未被掩码中预测被掩码"思想,用于从未标记语音数据中学习上下文化语音表示。...如果这一趋势保持不变,那么随着时间推移,可实现性能可能会“免费”提高,因为数据收集和计算能力改进允许使用越来越大预训练集,而不需要手动注释新数据。...介绍了目前最先进自监督语音表示学习框架之一。我们利用了“从未掩码中预测掩码想法,并提出了w2v-BERT,这是目前最先进框架之一,用于对语音应用深度神经网络进行预训练。...我们训练一个语音离散器(通过优化对比损失)来将连续语音信号表示为鉴别标记,并使用它们来训练一个类似BERT模型。...我们将这种分析方法应用于APC研究,并诊断了APC在模型容量受限时保存信息偏好。我们分析结果解释了为什么APC可以学习捕捉高级语音和说话人信息表征。

    51020

    Research | 使用无监督学习、多任务学习分子性质预测新方法

    材料与方法 数据集 本文首先从ChEMBL数据库收集了170万个未标记分子被用作预训练数据,以学习SMILES字符串中上下文信息。本文随机保留了整个预训练数据10%来评估预训练模型。...对于每个选中标记,它有80%几率被特殊掩码标记替换,有10%几率被字典中其他标记随机替换,还有10%几率保持不变。...在微调阶段,本文只对SMILES字符添加位置编码以保持与预训练阶段一致。此外,本文还添加了一个注意力掩码,如图1所示,以防止任务直接交换信息。...MTL-BERT模型首先通过掩码标记预测任务对大量未标记分子数据进行预训练,以挖掘SMILES字符串中上下文信息。在预训练阶段,首先使用不同起始原子和遍历顺序枚举SMILES字符串。...结果如图3所示,可以看出与STL-BERT模型相比,Cano-BERT模型在所有任务中都表现出明显性能损失,甚至在某些数据集中表现出超过10%退化。

    98830

    MG-BERT:利用无监督原子表示学习来预测分子性质

    BERT模型成功可以归因于掩码预测,该模型根据同一句子中其他可见词学习预测掩码或污染词。在这个过程中,该模型被驱动来挖掘句子中上下文信息。...3.模型框架 与非结构化自然语言处理原始BERT模型不同,MG-BERT根据分子图特点进行了一些修改。在嵌入层中,单词标记被原子类型标记取代。由于分子中原子没有顺序关系,因此不需要分配位置信息。...BERT利用两个学习任务对模型进行预训练,分别是MLM和NSP。MLM是一个填空任务,其中一个模型使用上下文词包围一个掩码标记来预测掩码词应该是什么。NSP任务是确定两个句子是否连续。...对于每个选定原子,有80%概率被[MASK]标识替换,有10%概率被其他原子随机替换,有10%概率保持不变。用原始分子作为训练模型groud truth,只计算被掩盖原子loss。 ?...这可能是因为从SMILES字符串学习要比从分子图学习复杂得多,这意味着SMILES- bert模型必须解析隐藏在SMILES字符串复杂语法中分子信息。

    1.3K50

    FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型(三)

    这些方法都必须拥有具备足够形态学、语句学以及语义学资讯以及大量字词规则所建构辞汇。常见RBMT难处在于无法给于适当且足够庞大资讯,来满足不同领域或是不同法则机器翻译法。...假设可以获得一个噪声函数g,它可以用于破坏文本,训练模型以预测给定g(X)原始文本X。目标是如下式最大化L_θ: 在g中引入两种类型噪声。首先,删除文本跨度,用一个掩码标记代替。...在该框架中,BERT输出作为一个外部序列表征,使用注意力模型将其纳入NMT模型。这是一种利用预训练模型一般方法,与标记化方式无关。...如果对齐一对((x_m)^i, (y_n)^j)中源词(x_m)^i被(xˆ_k)^i取代,我们也通过用一个通用掩码标记取代Y_n中(y_n)^j来掩码。...遵循预先训练好语言模型做法,10%被选中掩码保持不变10%用随机标记代替。被对齐代码切换和掩码所取代词将不会被选中,以防止跨语言信息损失。

    89520

    MGM、MolGPT、PAR、Uni-Mol、K-Bert、MolCLR…你都掌握了吗?一文总结生物制药必备经典模型(三)

    根据具体下游任务,使用预训练模型是不同。例如,在分子特性预测任务中,只使用分子预训练模型;在蛋白质-配体结合姿势预测中,两种预训练模型都要使用。 图10 Uni-Mol模型架构。...,而且位置编码需要在全局旋转和平移情况下保持不变。...通过统一预训练模型框架,结合有效预训练任务策略,在大规模分布式集群上进行了预训练模型训练。与 BERT 类似,Uni-Mol 中也使用了对原子掩码预测任务。...图11 Knowledge-based BERT(K-BERT)预训练策略 输入表征:每个SMILES都是用Schwaller等人提出标记化方式来标记成不同token。...当一个原子被掩码时,它原子特征被一个掩码标记取代,该标记与图12(b)中红框所示分子图中任何原子特征相区别。通过掩码处理,模型被迫学习内在化学信息(比如由某些共价连接原子可能类型)。

    62130

    GPT、BERT、XLM、GPT-2、BART…你都掌握了吗?一文总结文本生成必备经典模型(二)

    本文将分 2 期进行连载,共介绍 10 个在文本生成任务上曾取得 SOTA 经典模型。...除了掩码语言模型BERT还使用“下一句话预测”任务,联合预训练文本对表示。 BERT网络结构使用了双向Transformer堆叠,Encoder和Decoder分别12层。...[MASK];二是,在10%概率下,用随机单词替换token,比如my dog is hairy → my dog is apple;三是,在10%概率下,保持token不变,比如my dog is...Masked Language Modeling (MLM) 掩码语言建模masked language modeling (MLM)任务从文本流中随机抽取15%BPE标记,80%用[MASK]标记替换...,10%用随机标记替换,10%保持不动。

    93620

    掌握 BERT:自然语言处理 (NLP) 从初级到高级综合指南(1)

    在本章中,我们将探讨 BERT 预处理文本关键步骤,包括标记化、输入格式和掩码语言模型 (MLM) 目标。 标记化:将文本分解为有意义块 想象一下你正在教 BERT 读书。...、“[SEP]”] 掩码语言模型 (MLM) 目标:教授 BERT 上下文 BERT 秘密在于它理解双向上下文能力。...掩码语言模型 (MLM) 目标:填空游戏 在预训练期间,BERT 会得到一些带有掩码(隐藏)单词句子。然后,它尝试根据周围上下文来预测那些被屏蔽单词。这就像填空游戏语言版本。...掩码语言模型 (MLM) 预训练。...保持学习! BERT 嵌入 BERT 强大之处在于它能够以捕获特定上下文中单词含义方式表示单词。

    4.4K11

    【Pre-Training】XLNet:预训练最强,舍我其谁

    我们只影响分解顺序,而不影响序列顺序: ? 这样做原因是因为在下游微调阶段,模型训练数据是有序,所以我们还是需要保持原序列顺序使得其可以和原本位置编码一一对应。 但是具体该怎么实现呢?...在保证原序列不变情况下,还能有全排列效果。...然后将这两个流通过 Attention 后进行输出。 这里要注意内容掩码和查询掩码都是矩阵,内容掩码和查询掩码第 i 行代表 能看到其他 token。...内容掩码和查询掩码之间唯一区别是查询掩码对角元素为 0,即 token 看不到自己。图中,红色标记是起作用,白色部分是不起作用。...与 BERT 单挑: ? 单挑其他模型: ?

    93050
    领券