随着计算机视觉技术与深度学习的发展,AI智能检测与识别技术也越来越广泛地应用到社会生活的各个方面。在短短几年内,深度学习算法已经在处理图像及分类等方面,取得了可观的成绩,并且开始逐步代替人工在某些场景中进行使用,比如安防视频监控等。
在前一篇文章中,我们讨论了用于人体检测的早期方法,例如Vila Jones的目标检测框架(Haar级联)和方向梯度直方图(HOG)检测器。我们也看到了这些早期方法存在的问题,例如漏检、误检等。在本文中,我们将了解最新的深度学习技术是如何解决上述这些问题的,并使用代码来实现它。
根据图像或视频进行人体姿势估计在如健康跟踪、手语识别等实际应用中起着核心作用。由于个体会做出各种各样的姿势,此任务具有极大的挑战性。
来自中东科技大学在ECCV2018会议上已录用的文章“MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network”,使用姿态残差网络Pose Residual Network (PRN)进行快速多人姿态估计。
以监控摄像头数据集的人体检测模型为例,说明了如何通过对数据的理解来逐步提升模型的效果,不对模型做任何改动,将mAP从0.46提升到了0.79。
目标检测支持许多视觉任务,如实例分割、姿态估计、跟踪和动作识别,这些计算机视觉任务在监控、自动驾驶和视觉答疑等领域有着广泛的应用。随着这种广泛的实际应用,目标检测自然成为一个活跃的研究领域。
人体姿态骨架图 (skeleton) 用图形格式表示人的动作。本质上,它是一组坐标,连接起来可以描述人的姿势。骨架中的每个坐标都被称为这个图的部件(或关节、关键点)。我们称两个部件之间的有效连接为对(pair,或肢)。但是要注意的是,并非所有部件组合 都能产生有效的对。下图是一个人体姿态骨架图的示例。
随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。目前基于动态视频人脸检测、人脸眨眼、热红外与可见光人脸关联等领先业界的人脸活体检测算法,已经取得了一定的进步。
OpenCV是一组计算机视觉(CV)库,包含2500多个工具,从经典的机器学习(ML)算法到深度学习和神经网络。这是一个开源解三方库,可以在Apache许可下自由使用、修改和分发。
【新智元导读】图像识别领域的权威标杆 MS COCO 2017 竞赛结果公布。COCO 竞赛代表了继 ImageNet 后图像识别的最高水平。今年,来自旷视、商汤、北大、北航、中科院自动化所的众多中国团队,几乎占据了各项任务的第一,超越了谷歌、Facebook。 MS COCO(Microsoft Common Objects in Context,常见物体图像识别)竞赛是继 ImageNet 竞赛(已停办)后,计算机视觉领域最受关注和最权威的比赛之一,是图像(物体)识别方向最重要的标杆(没有之一),也是目
李林 假装发自 威尼斯 量子位 出品 | 公众号 QbitAI 又一次!中国团队拿下一项AI赛事的多个大奖! 8天的计算机视觉顶会ICCV 2017在威尼斯悄然落幕,期间中国团队在物体检测、人体关键点检测等竞争激烈的比赛中击败了谷歌、微软、Facebook等国际巨头AI实验室。 ICCV 2017 “Joint COCO and Places Recognition Challenge” Workshop中,一共公布了7项竞赛的结果。 中国AI创业公司旷视科技(Face++)在MS COCO物体检测、人体关
近年来,人工智能的发展速度十分惊人,在安防监控、工业制造、农业、教育、金融、医疗等领域中的应用越来越广泛,并且未来几年也将继续保持高速的发展趋势。通过人工智能技术提高自动化程度、减少人工干预、提高监管效率,已经成为当前的行业发展方向。今天来给大家盘点一下当前人工智能发展趋势下的一些常见AI算法以及应用场景。
计算机视觉(Computer Vision)是一门将人类的视觉能力赋予机器的学科。它涵盖了图像识别、图像处理、模式识别等多个方向,并已成为人工智能研究的重要组成部分。本文将详细介绍计算机视觉的定义、历史背景及发展、和当前的应用领域概览。
区域入侵/周界报警入侵检测技术是TSINGSEE青犀智能分析平台推出的一种视频监控系统,可检测划定区域内是否有可疑人员并且在检测出这样的事件时生成警报。
作为国内CV领域的明星公司,商汤科技及联合实验室共有62篇论文被接收,其中口头报告(Oral)论文18篇,相比2018 CVPR共44篇论文入选,增幅超40%。
为了规范大家文明过马路,不少城市(深圳、天津、 莆田、新疆库尔勒、广州……)上线了「行人闯红灯曝光台」。顾名思义,闯红灯的行人会被曝光在大屏幕上。
要实现AI运动计时、计数,要解决主要技术问题有:视频抽帧、视频人体检测、姿态识别、计时计数算法,其中最主要的也是技术前提的便是人体识别检测,实现上面的技术,便是一个完整的AI运动解决方案了。
AI视频识别技术是计算机视觉中增长最快的领域之一,基于AI算法对视频内容进行检测分析,通过提取视频中的关键信息进行标记或者相关处理,并形成相应事件的处理和告警。
腾讯云神图·人体分析(Body Analysis)基于腾讯优图领先的人体分析算法,提供人像分割、人体检测、行人重识别(ReID)等服务。支持识别图片或视频中的半身人体轮廓,并将其与背景进行分离;支持通过人体检测,识别行人的穿着、体态等属性信息,实现跨摄像头跨场景下行人的识别与检索。可应用于人像抠图、背景特效、行人搜索、人群密度检测等场景。
RMPE: Regional Multi-Person Pose Estimation ICCV2017 Code is based Caffe and Torch! https://github.com/MVIG-SJTU/RMPE https://github.com/MVIG-SJTU/AlphaPose
人体姿态检测能力是插件的核心功能之一,插件为您封装好了基本的人体检测及逻辑运算检测规则。
在日常生活工作中,出现了人脸验证、人脸支付、人脸乘梯、人脸门禁等等常见的应用场景。这说明人脸识别技术已经在门禁安防、金融行业、教育医疗等领域被广泛地应用,人脸识别技术的高速发展与应用同时也出现不少质疑。其中之一就是人脸识别很容易被照片、视频、人脸模型等方式轻易蒙混,并且网络上也传出不少破解方法。针对这些问题,人脸识别技术其实也是进行了升级迭代,当前的人脸识别系统是需要具有人脸活体检测功能的。那么人脸活体检测功能到底是什么呢?
随着人工智能检测识别技术与视频处理技术的不断融合,应用场景也不断随之扩大,TSINGSEE青犀视频近期也发布了基于AI智能检测识别技术的硬件设备——智能分析网关。本设备内置多种AI算法,可对实时视频中的人脸、人体、物体等进行检测、跟踪与抓拍,支持人体检测、区域入侵检测、口罩佩戴检测、安全帽佩戴检测以及多种扩展算法。
腾讯公司和中国计算机学会于2013年共同发起的CCF-腾讯犀牛鸟基金(以下简称犀牛鸟基金),始终致力于支持海内外青年学者开展前沿学术研究与技术实践。犀牛鸟基金通过提供企业真实问题与业务实际需求,搭建产学研合作及学术交流的平台,推动合作双方学术影响力的提升及研究成果的应用落地,促进自主技术的创新与发展。 本年度犀牛鸟基金共设立10个科研方向共33项研究课题 申报截止时间为2021年6月15日24:00(北京时间) 申报链接: https://www.withzz.com/project/detail/12
上一篇文章,为您分享了如何对用户选择(上传)的视频,进行人体检测识别,并进行姿态分析、运动计数等实现。今天我们继续为您分享如何对用户上传(选择)图片,进行人体检测及姿态运动分析。同视频识别检测原理相似,只要拿到用户上传或选择的图片RGBA数据,即可进一步进行人体识别、姿态、运动分析等,如下图所示:
目前已经有了越来越多的基于人脸识别的应用,例如我们现在应用极广的“刷脸支付”、“刷脸打卡”等。但随着技术的发展,当年很多电影中的画面慢慢变成了现实,坏人可以通过带上提前准备好的照片或者面具,甚至是一副眼镜,轻而易举的被识别成其他人,随着这种人脸伪造的风险和隐患逐日增加,人脸活体检测技术得到了越来越多的关注。
近日,计算机视觉方向的三大国际顶级会议之一的ECCV 2020公布论文获奖结果。本次ECCV 2020有效投稿5025篇,最终被接受发表论文1361篇,录取率为27%,较上届有所下降。其中,oral的论文数为104篇,占提交总量的2%;spotlight的数目为161篇,占提交总量的5%;其余论文均为poster。
作者:卢策吾 【新智元导读】上海交通大学卢策吾团队,今日开源AlphaPose系统。该系统在姿态估计(pose estimation)的标准测试集COCO上较现有最好姿态估计开源系统Mask-RCNN相对提高8.2%,较另一个常用开源系统OpenPose(CMU)相对提高17%。同时,卢策吾团队也开源了两个基于AlphaPose的工作:(1)一个高效率的视频姿态跟踪器(pose tracker),目前姿态跟踪准确率第一。(2)一个新的应用“视觉副词识别“(Visual Adverb Recognition)
如果你觉得好的话,不妨分享到朋友圈。 当地时间10月29日上午,在意大利威尼斯召开的计算机视觉国际顶级会议 International Conference on Computer Vision(ICCV 2017)的 “Joint COCO and Places Recognition Challenge” Workshop 中公布了 COCO 及 Places 竞赛排名情况。在共七项挑战项目中,旷视科技研究院团队(Megvii)参与了其中最重要的四项,并获得了三项第一、一项第二的优异成绩,一举击败了来自
雷锋网AI科技评论按:12月21日,由创新工场、搜狗、今日头条三家联合举办的首届 “AI Challenger全球AI挑战赛”在北京举办落幕仪式及颁奖典礼。雷锋网记者也前往了颁奖典礼现场,进行了全程跟踪报道。 都有哪些参赛队伍获奖? 大赛分为视觉和翻译两大类,共五个赛道。分别是人体骨骼关键点检测竞赛、图像中文描述竞赛、场景分类竞赛、英中机器文本翻译竞赛和英中机器同声传译竞赛。参赛队伍共计7079支,其中场景分类参赛团队最多,达2004支。人体骨骼关键点检测参赛团队1735个,图像中文描述1479个参赛队,机
AI 研习社按:12月21日,由创新工场、搜狗、今日头条三家联合举办的首届 “AI Challenger全球AI挑战赛”在北京举办落幕仪式及颁奖典礼。AI 研习社记者也前往了颁奖典礼现场,进行了全程跟踪报道。 都有哪些参赛队伍获奖? 大赛分为视觉和翻译两大类,共五个赛道。分别是人体骨骼关键点检测竞赛、图像中文描述竞赛、场景分类竞赛、英中机器文本翻译竞赛和英中机器同声传译竞赛。参赛队伍共计7079支,其中场景分类参赛团队最多,达2004支。人体骨骼关键点检测参赛团队1735个,图像中文描述1479个参赛
机器之心报道 机器之心编辑部 你的人脸不会被恶意「盗刷」,也有小视科技 AI 算法的一份力。 对于很多人来说,刷脸解锁手机、进行快捷支付是每天必不可少的动作。不少银行和支付机构现在还开启了手机 APP 人脸识别认证,让以往需要前去营业网点才能申请的服务可被远程验证。但与此同时,利用图片、3D 模型等破解人脸识别的方法也越来越多,甚至还出现了 Deepfake 这种仿照他人人脸,生成特定视频的深度学习技术。 随着人脸识别破解技术的出现,人们对于活体检测需求逐渐增多,安全级别要求也愈发严格。当前,活体检测是人
说到体检,大家应该都不陌生,从小到大我们经历了无数大大小小的体检;从学校的不定时体检,到升学体检,入职体检等等。
目前主流的高精度实例物体分割框架都是基于很强的物体检测方法,如 Fast/Faster R-CNN, YOLO 等。虽然不同的方法设计了不同的结构,但是这些方法都遵循着一个基本的规则:首先从图像中生成大量的候选区域,然后用非极大值抑制(NMS)算法从这些数以千计的候选区域中剔除那些重复的候选区域。
数字乡村是伴随网络化、信息化和数字化在农业农村经济社会发展中的应用,既是乡村振兴的战略方向,也是建设数字中国的重要内容。为了进一步提升乡村治理智能化、专业化水平,解决建设顶层缺失、数据孤岛等问题,数字孪生技术被广泛应用于数字乡村建设中。
AI深度学习技术正在呈现飞速增长的状态,有数据分析预测,到2030年,AI有望实现13万亿美元的市场规模。尤其是伴随着智慧城市、智能交通、工业互联网、生产制造等应用场景对视频数据分析需求的激增,AI与计算机视觉技术正在加速智能与边缘计算的融合,并将进一步助推城市、交通、互联网、物联网、旅游、金融、司法、教育、能源与环保等行业的智能化变革。
讲解AI⾏业智慧城市⾏业的⽬前状况,并从边缘设备应用、越界识别应⽤等为案例进⾏讲解,通过实战化培训全面提升算法实战应用。
实时高精度的单阶段人体姿态估计算法 RTMO 正式开源!RTMO 结合了坐标回归策略与 YOLOX 检测框架,克服了现有的单阶段人体姿态估计模型精度与速度难以兼得的难题。RTMO 具有两个突出的优势:
我国是世界上产煤大国,同时也是煤矿安全生产形势最为严峻的国家之一。在煤矿事故的防治工作中,CH4、CO2、CO 是主要的监测对象。
过去的一年我都在忙着实现我的本科毕业设计课题项目:行人检测系统。我们团队的目标是实时检测现场CCTV摄像机视频流中出现的行人。本文是对此项目的简要总结,同时对我们在开发这个行人检测系统中用到的一些开源项目和库进行简单的评价。
微软亚洲研究院是国内顶级CV研究机构,众多CV黑科技的诞生地,2020年始,亚研院盘点了2019年CV领域重点论文,大部分附有开源代码,希望对大家有帮助。
这篇论文从全新的角度处理了单图像多人姿态检测的问题,通过新提出的结构化位姿表示方法(Structured Pose Representation)将多人姿态检测问题从先前的两阶段方法浓缩为单阶段检测,大幅度提高了人体位姿检测的效率和精度。
发展 知识点 腾讯AI 人脸技术 车辆技术 图像识别技术 文字识别技术 腾讯TI平台 发展趋势 人才岗位 发展 1950年,他那篇著名论文《计算机器与智能》的正式发表,里面有史以来 第一次触及到了“人工智能”,提出了 “图灵测试”,这当中涉及了自动解释,和 自然语言的生成,作为判断智能的条件。 1956年美国达特茅斯会议:“人工智能”概念诞生 人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能 的理论、方法、技术及应用系统的一门新技术科学。 人工智能的
MS COCO 的全称是常见物体图像识别(Microsoft Common Objects in Context),起源于是微软于2014年出资标注的Microsoft COCO数据集,同名竞赛与此前著名的 ImageNet 竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。
近年来,在平安城市、雪亮工程、智安小区等政策的扶持下,视频监控逐渐成为市场的新增长点。而云计算、大数据、智能AI等技术,也为视频监控领域的技术提升、智能化改革提供了强大的支持。
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《JavaCV的摄像头实战》的第八篇,前面的操作夯实了的帧和流处理的基本功,接下来开始实现一些常见的CV能力,就从本篇的人检测别开始吧 OpenCV中常用的人脸检测是基于Haar特征的级联分类器,本篇借助JavaCV来使用该分类器实现人脸检测 简单的设计 编码之前先把要做的事情梳理一下: 检测功能可能用在多个场景:窗口预览、推流、存文件都可能用到
因为在ICIP2019上面和两位老师搞了一个关于人体姿态估计以及动作行为的tutorial,所以最近整理了蛮多人体姿态估计方面的文章,做了一个总结和梳理,希望能抛砖引玉。
机器之心原创 作者:蛋酱 那些年关于变身圣斗士的梦想,如今能在腾讯微视 App 就能实现。 「年轻的青铜圣斗士少年们啊,为了大地上的爱与和平,我们将逝去,献上全部的生命和灵魂,融为一体。就在此刻,燃烧吧,黄金的小宇宙!雅典娜啊,请赐予这黑暗的世界一线光明!」 就是这段话,没错,是我们小时候倒背如流的十二黄金圣斗士语录了。很多人也曾暗中想象,自己能成为这群黄金圣斗士的成员之一。现在,「变身」的机会来了! 在腾讯微视 App,黄金圣斗士铠甲的特效挂件已经正式上线。这是静态照片变身后的样子: 变身的操作方法
Xnor.ai今天推出了AI2Go平台,该平台允许开发者和制造商为设备上的人工智能优化预先构建的AI模型。AI2Go专为相机、无人机和传感器等设备中的最先进边缘计算而设计。
领取专属 10元无门槛券
手把手带您无忧上云