《天龙八部》是金庸老先生的一部经典古装武侠爱情小说,1997 年由香港无线电视台拍摄成同名影视剧,李添胜执导,黄日华、陈浩民、樊少皇、李若彤、联袂主演。该剧讲述的是面对乱世,萧(乔)峰、虚竹、段誉三人开始了非同寻常的江湖生涯,遇见了诸如天山童姥、慕容复、大轮明王、丁春秋、游坦之、四大恶人等各色高手,生死情仇、爱恨别离、民族大义在因缘际会中施展等故事。
关系图,从字面上可以看出,为关系的图形,既然为关系,那么就需要有点以及关系,用来表示点与点之间的联系。所以我们可以得出:关系图需要两个必要的元素,节点,关系,其中关系需要包含有联系的节点以及节点联系说明。
导读:在线社交媒体平台的发展,带来了细粒度检索、视频语义摘要等媒体智能服务的巨大需求。现有的视频理解技术缺乏深入的语义线索,结合视频中人物的社交关系才能更完整、准确地理解剧情,从而提升用户体验,支撑智能应用。这里主要介绍我们将动态分析和图机器学习相结合,围绕视频中的人物社交关系网络所开展的两个最新的工作。主要内容包括:
Python技术路径中包含入门知识、Python基础、Web框架、基础项目、网络编程、数据与计算、综合项目七个模块。路径中的教程将带你逐步深入,学会如何使用 Python 实现一个博客,桌面词典,微信机器人或网络安全软件等。完成本路径的基础及项目练习,将具备独立的Python开发能力。
腾讯ISUX isux.tencent.com 社交用户体验设计 春节作为我国最盛大的传统节日,历经长期的传承和发展,已逐步形成了各地方,各民族稳定的文化内涵。设计师需要从用户内心出发,探究用户回家过年的真实意义,将情感基因视觉化。 Step1 “家”文化的情感基因 孟子曰:“天下之本在国,国之本在家。”中国传统文化形成和发展的重要社会根基是以血缘关系为纽带的宗法制度,它在很大程度上决定了中国的社会政治结构和意识形态。虽然时代变迁,科技进步,但是“家庭之上“的观念千百年来已深入国人骨血。 “
即使与 REST API 打交道这么多年,当我第一次了解到 GraphQL 和它试图解决的问题时,我还是禁不住把本文的标题发在了 Twitter 上。
《庆余年》里面人物关系复杂,如果能画出一个人物关系图谱,可以直观的理解其中人物关系,更好的追剧。
标题有点长,也有点怪。前半部分文艺向,后半部分python技术向。目的就是用PIL库得到100张图的拼图(成果图见文末)。
專 欄 ❈ 罗罗攀,Python中文社区专栏作者 专栏地址: http://www.jianshu.com/u/9104ebf5e177 ❈ 人一生都可能无法逆天改命,但你却是要去奋斗一把。本文章
今天辰哥来教大家从一本小说/名著里面提取出人名,并对人名之间的关系进行统计(同一段里面人名两两出现),根据人名之间的关系进行绘制关系图--gephi
今天写一篇短文,推荐一部台剧《我們與惡的距離》。目前豆瓣 9.4 分, IMDB 9.6分。
在大数据时代,通过对目标人物的轨迹、通信、社交、出行、网络等多模态行为进行挖掘并建立人物画像模型,并依托人物基础特征和高层特征,实例化人物画像,支撑有关部门分析人员全方位了解目标人物的行为、活动、状态、基本属性等信息,同时能够基于人物画像指导人物活动规律分析、人物能力分析、人物动向分析等应用。
经过若干个月的点滴积累,我有幸参与到抖音国庆活动的开发,这是我第一次完整参与大型活动项目的开发,它是全员关注的一个重点项目,致力于让用户领略美好中国,指导用户在抖音中搜索与获取旅行攻略和出游信息。
names用于存入小说人物和出场次数;relationships保存人物关系的有向边,该字典的键为有向边的起点,值为一个字典edge,edge的键是有向边的终点,值是有向边的权值,代表两个人物之间联系的紧密程度;linenames存入每行小说出现的人物;all_names是小说所有人物。
说起灭霸的‘响指’,相信看过复仇者联盟4的人都不陌生。而小蜘蛛——汤姆·赫兰德被灭霸用响指消灭的场面也令人影响深刻——‘化为尘埃粒子消散’。今天就为大家带来如何制作粒子特效。
在我还念中学的时候,每当心情不好,就靠读诗词来排遣,慢慢读得多了,就发现唐朝诗人之间存在着微妙的关系。比如杜甫非常喜欢李白,到了做梦都想见李白的地步:三夜频梦君,情亲见君意(梦李白)。而李白向孟浩然表过白:吾爱孟夫子,风流天下闻(赠孟浩然)。孟浩然的好基友则是王昌龄:数年同笔砚,兹夕间衾裯(送王昌龄之岭南)。
出于好奇心,我一度想理清楚他们之间的关系。但是全唐诗一共四万多首,再加上诗人之间经常称呼对方的别称,整理起来非常麻烦,慢慢的也就绝了这个念头。
授权转载自前进日志 作者 | 前进四先生 在我还念中学的时候,每当心情不好,就靠读诗词来排遣,慢慢读得多了,就发现唐朝诗人之间存在着微妙的关系。比如杜甫非常喜欢李白,到了做梦都想见李白的地步:三夜频梦君,情亲见君意(梦李白)。而李白向孟浩然表过白:吾爱孟夫子,风流天下闻(赠孟浩然)。孟浩然的好基友则是王昌龄:数年同笔砚,兹夕间衾裯(送王昌龄之岭南)。 出于好奇心,我一度想理清楚他们之间的关系。但是全唐诗一共四万多首,再加上诗人之间经常称呼对方的别称,整理起来非常麻烦,慢慢的也就绝了这个念头。 直到前不久
今天,一起用 Python 来理一理红楼梦里的那些关系 不要问我为啥是红楼梦,而不是水浒三国或西游,因为我也鉴定的认为,红楼才是无可争议的中国古典小说只巅峰,且不接受反驳!而红楼梦也是我多次反复品读的为数不多的小说,对它的感情也是最深的。 好了,不酸了,开干。
上一期的推送,小F做了一些社交网络分析的前期工作。 传送门:Python数据可视化:平凡的世界 比如获取文本信息,人物信息。 最后生成一个人物出现频数词云图。 本次来完成剩下的工作。 实现《平凡的世界
大家都玩过游戏,有没有想过游戏中的人物是怎么动起来的?人物是由很多的图形构成的,我们需要画出这些图形然后再赋予时间,就可以让他动起来。那么如何在小程序上让简单的图动起来呢?
---- 新智元报道 编辑:桃子 拉燕 【新智元导读】《巫师》第二季,还没搞清人物关系?外国小哥Milán Janosov近日发了一篇论文专门研究这部剧。他通过AI对原著系列中的7本书进行梳理后,绘出了一张完美人物关系图。 一口气刷完《巫师》,人物情节乱如麻。 外国小哥Milán Janosov直接用AI对人物社交关系网络梳理了一遍。下面2个节点中的连线,代表在小说中的5句话里同时出现的人物。 一个Geralt以为中心,另一个以Ciri为中心。 是不是看过后,只能用豁然开朗来形容。 追剧最高
春天来了,万物复苏,又到了………… 学霸码农们丰收的季节! 这次丰收的“农场”是即将在美国举办的IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 。 名字是有点难懂,你只需知道这是全球计算机视觉顶级会议 ,相当于视觉人工智能的奥赛。参会的人就是你天天在用的美颜滤镜、人脸识别、车牌识别等等技术背后的学霸工程师。 为了让论文被大会收录,全球计算机视觉专家都会拿出大招去pk,平均录取率只有25%! 今年,腾
“Valar Morghuli,凡人皆有一死。” “没错,但那是‘凡人’。会数据的,都不是凡人。” ——DT君
【新智元导读】非监督式学习如何确定小说中动态的人物角色关系?本论文提出了一种新的神经网络架构的RMN,通过结合词典学习来对关系描述符进行学习,是深度循环自编码器的一种新的变体。与马尔可夫(HTMM)模型相比,RMN能够学习多种人际关系状态。 论文作者包括马里兰大学计算机科学系和高级计算机研究所Mohit Iyyer,Anupam Guha,SnigdhaChaturvedi,Hal Daume III;科纳罗拉大学计算机科学系Jordan Boyd-Graber。 摘要 理解两个角色之间不断变化的虚构关
六人定律,相信大家一定都不会陌生。简单的说,你只需要通过6个人,就可以认识到世界上所有的人。足以说明,世界就像一张网,任何事物之间都能找到关系。
王小新 编译自 Medium 量子位 出品 | 公众号 QbitAI Alexandre Attia是《辛普森一家》的狂热粉丝。他看了一系列辛普森剧集,想建立一个能识别其中人物的神经网络。 接下来让我
《釜山行》是一部丧尸灾难片,其人物少、关系简单,非常适合我们学习文本处理。这个项目将介绍共现在关系中的提取,使用python编写代码实现对《釜山行》文本的人物关系提取,最终利用Gephi软件对提取的人物关系绘制人物关系图。实体间的共现是一种基于统计的信息提取。关系紧密的人物往往会在文本中多段内同时出现,可以通过识别文本中已确定的实体(人名),计算不同实体共同出现的次数和比率。当比率大于某一阈值,我们认为两个实体间存在某种联系。这种联系可以具体细化,但提取过程也更加复杂。因此在此课程只介绍最基础的共现网络。
作者:郑孙聪,腾讯 TEG 应用研究员 Topbase 是由 TEG-AI 平台部构建并维护的一个专注于通用领域知识图谱,其涉及 226 种概念类型,共计 1 亿多实体,三元组数量达 22 亿。在技术上,Topbase 支持图谱的自动构建和数据的及时更新入库。此外,Topbase 还连续两次获得过知识图谱领域顶级赛事 KBP 的大奖。目前,Topbase 主要应用在微信搜一搜,信息流推荐以及智能问答产品。本文主要梳理 Topbase 构建过程中的技术经验,从 0 到 1 的介绍了构建过程中的重难点问
豆瓣评分高达8.6的国产剧《长安十二时辰》,终于在今晚迎来大结局——幕后BOSS究竟是谁?张小敬和李必命运如何,都一一揭开谜底。该剧改编自以“脑洞大”著称的作家马伯庸同名小说,悬疑反转的快节奏剧情,美轮美奂的长安城场景,唐朝韵味的妆法服装,刻画细致的人物角色,情节、灯光、道具、演技均比肩电影制作。
导读:最近正值复联4上映,我也发现了一个有趣的网站。主要是关于漫威人物、漫威电影的图谱。
听说最近大家都在看《欢乐颂》,这部热剧里,女性可谓是绝对的主角,22楼5个女房客的互动好像把男性角色们的风头都抢光了;但是热门剧中又总是不能缺了言情戏的点缀。所以,《欢乐颂》到底谁和谁堪称好闺蜜、谁和谁又最为般配呢?还是让文本挖掘为你揭晓吧…… 方法 要判断两个人的关系的密切程度,可以从他们接触的频率、交流的次数入手;反映到小说上,就是两个人出现在同一场景或同一事件里的次数很多。因此在实际分析时,我们假设一个段落是一个场景,出现在这个段落里的人物,彼此之间都是有关系的。基于这个假设,我们先对原著小说进行文
图 1:我们提出了一种在真实世界的复杂场景中生成自然的人物-场景交互事件序列的方法。如图所示,人物首先走到凳子旁坐下(黄色到红色),然后走到另一张椅子旁坐下(红色到洋红色),最后走到沙发旁躺下(洋红色到蓝色)。
Cypher 是 Neo4j 提出的图查询语言,是一种声明式的图数据库查询语言,如同关系数据库中的 SQL,它拥有精简的语法和强大的表现力,能够精准且高效地对图数据进行查询和更新。
点击上方蓝字每天学习数据库 ---- 万众瞩目的《权力的游戏》第八季,伴随着“史诗级大烂尾”的哀怨声,终于完结了! 面对剧中错综复杂的人物关系,新粉们是不是已经捋不清楚了?不过,看到人物、节点、关系、属性,这些熟悉的名词,各位想到了什么? 是的,图数据库!一向以处理“关系的连接”称霸江湖的图数据库 接下来我们试一试好玩的,用图数据库Neo4j,来梳理一下权游的人物关系图。 Ps:贴心的小编在后面奉上了Neo4j最全的安装配置教程!快快收藏起来~ 首先总览一下剧中人物关系图,几行代码就可清
我第一次建立关联图谱用的是R语言,通过写代码帮公安挖掘团伙犯罪,并用图形展示团伙之间的关联关系。
三维参数导引下可控一致的人体图像动画生成项目。只需要一张照片,就能让照片里的人物动起来。
本文是悉尼大学博士二年级学生侯志依据三篇发表在CVPR2021和ECCV2020的论文写成的综述文章。
在数据可视化领域,关系网图是一种强大的工具,可以展示实体之间的复杂关系。Pyecharts 是一个基于 Echarts 的 Python 可视化库,提供了简单而强大的接口,使得绘制关系网图变得轻松而愉快。本文将介绍 Pyecharts 绘制多种炫酷关系网图的参数说明,并通过代码实战演示如何创建令人印象深刻的关系网图。
基于生成对抗网络(GAN)的动漫人物生成近年来兴起的动漫产业新技术。传统的GAN模型利用反向传播算法,通过生成器和判别器动态对抗,得到一个目标生成模型。由于训练过程不稳定,网络难以收敛,导致生成的图像缺乏多样性和准确性,甚至会产生模式崩溃。本文基于深度学习,参考相关实战项目pytorch-book,学习网络的训练方法,采用经过标准化处理和分类的动漫人物面部图像知乎用户何之源分享的素材,训练DCGAN,实现动漫人物图像自动生成。在训练过程中,控制实验参数,进行定量分析和优化,得到可自动生成动漫人物图像的生成器模型。主要工作如下:
https://github.com/human-centered-ai-lab/dat-kandinsky-patterns
前两天的 R 语言版:R 语言分析《釜山行》人物关系 让很多人都很惊叹,今天小编发糖,给大家送上 Python 版。 本文使用 jieba 库对 《釜山行》中的人物关系进行提取,然后使用 Gephi 软件进行关系可视化处理,得到可视化的人物关系。 1. 使用 jieba 库对《釜山行》的剧本进行关系实体。这里的实体指的是人物。 names = {} # 姓名字典relationships = {} # 关系字典#limenames 记录的是每一行出现的名字, 也就是说,只有
1.由于要分析120回中主要人物的出场次数,爬取《三国演义》120回,每回放在一个段落里;len(f.readlines()) = 120. 2.安装主要的python库,如jieba,wordcloud,pandas,codecs,matplotlib,pyecharts, bs4等,还有Gephi;
大家好,我是shadow,我是一名智能产品架构师,有10年经验的技术和设计经验;毕业于上海交通大学,同济大学;服务过的企业有中兴通讯、招商银行、ARKIE智能设计等。我每天的工作就是在设计师和程序员的身份之间切换,设计思维和计算机思维之间切换。
5 年前,一位程序员因删除了自己开源项目 left pad 中的一些代码而让大半个互联网瘫痪、导致无数代码库崩溃并引发热议。现在,同样的事情再次发生了 —— 上上周,知名工具库 Faker.js 的作者做了同样的事情,现在的结果也和5年前差不多。
大家给差评的原因也很统一,电视剧对小说改编过多,原著党难以接受,再加上5毛钱特效和演员的尴尬演技,感觉是妥妥烂片无疑了。不妨再看看给好评的人都是些神马想法
领取专属 10元无门槛券
手把手带您无忧上云