【新智元导读】发表在 Cell 的一项研究揭示了人脸识别的具体神经元活动过程。对猕猴的实验表明,对脸部的识别是由大脑中 200 多个不同神经元共同编码完成的,每个神经元会对一张脸不同特征的参数组合进行相应。这一发现推翻了此前人脸由特定细胞识别的假说。《纽约时报》报道称,机器学习给神经科学带来了一种悲观主义色彩,认为大脑类似黑箱,该论文则提供了反例:研究人员记录了视觉系统最高级的神经元信号,可以看到那里没有黑箱,我们完全可能揭开大脑的奥秘。 不必花费太多心思就从人群中找到熟识的脸,对于绝大多数人而言都是小事一
场景描述:近日,朝鲜媒体《统一的回声》发布刊文,介绍了新开发的自研智能蓝天手机。文章中称,该款手机处理速度快,支持人脸识别和指纹解锁等功能。据朝鲜媒体早前报道,该智能手机的人脸识别功能,是由朝鲜的顶级学府金日成综合大学开发而来的。那么这项技术究竟是什么水准?此外,朝鲜国内的 AI 发展又是怎样一个局面?
今年的CES Asia快成为车展了。 今天,CES Aisa在上海首日开展,早上镁客君兴冲冲地走进展厅时,里面已经是“红旗招展、人山人海”。漂亮的小姐姐们成为了“吸睛”的利器,而酷炫的外形和脑洞大开的
计算机视觉、人工智能、大数据......吴博身上的标签,似乎通通与美业无关。而如今,仅用了一年时间,他已和将近400家美业机构建立了合作关系。
虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜识别技术采用专用光学图像采集仪采集人眼虹膜图像,然后通过数字图像处理技术、模式识别和人工智能技术对采集到的虹膜图像进行处理、存储、比对,实现对人员身份的认证和识别。在众多的生物特征识别技术中,虹膜识别因为其超群的唯一性、稳定性和非侵犯性而具有特殊的优势。近年来,虹膜识别得到了来自学术界、产业界、政府和军队等的广泛关注。 指纹是人类手指末端指腹表皮上凹凸不平的纹
|懒人阅读:计算机视觉的应用无处不在,就像视觉是我们感知世界的最主要方式之一,所以其应用场景和公司也数不胜数。机器学习、深度学习等技术使用到CV之中后,为很多复杂视觉信号的处理带来了可能,从而可以进行更加精准的目标识别、目标跟踪、场景重建等应用。
这家为47家美国最大的警察机构提供摄像设备及软件的公司,这一次竟然割爱,主动放弃了人脸识别这一在安防领域颇具潜力的技术。
文章来自是德科技 http://www.keysight.com.cn 选择示波器,还是逻辑分析仪? 测试工程师有没有遇到这样的问题呢。 在选择是使用示波器,还是使用逻辑分析仪时,多数工程师会选择示
一直以来以概念诗人的AI,如今正在逐渐向实用化迈进。在近期举办的2017中国国际金融展上,AI技术就成功地“反客为主”,将本应该以金融为主题的国际展会,变成了自己产业化成绩的秀场。 除了各大金融机构以外,今年的金融展还吸引来了包括松下、柯达、富士通、恩智浦半导体、瑞银科技、中软高科、Vertiv和维融电子在内的上百家国内外金融科技企业,展示了移动金融、自助设备终端、金融机具及配件、金融安全以及IT系统解决方案等大量的新产品和新技术。 当中,以人脸识别为代表的AI技术备受关注。对于银行等机构入场工作和服务
最近,亚马逊正式宣布,他们研发的手掌识别技术「Amazon One」正式投入商用。
2013年,苹果机iphone5S让指纹识别在手机上普及,它告诉各大手机厂商,指纹可以这么玩。同样苹果它也让指纹识别从手机上消失。譬如,今年苹果就推出了支持面部识别的iPhone X,而这款产品不仅带来了黑科技,也让解锁技术得到进一步的变革。当然,更值得一提的是,iPhone X的面部识别技术现在也已成为Android手机厂商所追求的潮流风向。 那老派今天就跟大家讲讲身份识别的几大类型。 1.指纹识别 指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。指纹识别技术涉及图像处理、模式识别、计算机视觉、数学形
众所周知,dlib是人脸识别的利器,被广泛应用于行为检测、安防工程、表情分析等,甚至还有学术界的前沿老师将这一技术用于上课点名,这一异想天开的想法又很快在工业界开枝散叶,落地生花,因为,越来越多的公司开始用大门口的摄像仪+内置的人脸识别算法实现员工的上下班打卡了!这样相比之下,以前的指纹信息真的是太单薄了,人脸识别的检测效果,是像素级的,更是毛孔级的!
选自arXiv 机器之心编译 机器之心编辑部 人脸识别是机器学习社区研究最多的课题之一,以 3D 人脸识别为代表的相关 ML 技术十年来都有哪些进展?这篇文章给出了答案。 近年来,人脸识别的研究已经转向使用 3D 人脸表面,因为 3D 几何信息可以表征更多的鉴别特征。近日,澳大利亚迪肯大学的三位研究者回顾了过去十年发展起来的 3D 人脸识别技术,总体上分为常规方法和深度学习方法。 从左至右依次是迪肯大学信息技术学院博士生 Yaping Jing、讲师(助理教授) Xuequan Lu 和高级讲师 Sh
据腾讯研究院统计,截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国家。本文中选取了国外和国内部分有代表性的AI产业链条上相关公司就行分析(排名不分先后),希望对有志于从事人工智能相关工作或者想了解AI行业目前发展现状的朋友能有所帮助。小编会从AI芯片、应用层算法、应用领域等方面对相关公司进行盘点,由于部分公司可能会涉及产业链条上不同的领域,文中侧重选取了某些点进行分析阐述。备注:文中涉及到的企业估值均源于公开资料,本文对数字真实性不做任何担保;对于企业的明星指数是小编根据公开资料以及行业内部朋友反馈做的综合评估,不作为投资参考。
这一年来,有数场高峰论坛吸引了众人的目光,从大连的夏季达沃斯论坛到天津的世界智能大会再到北京的软博会,每一个都是国际型、重量级的高峰论坛。但有趣的是,在这三个论坛中,人工智能(AI)都成为了主角。
随着人工智能和机器学习的兴起,企业和组织越来越多地寻找创新方法来利用这些技术来获得竞争优势。 该领域最强大的工具之一便是 K8sGPT,即基于 Kubernetes 的 GPT,它将 Kubernetes 编排的优势与 GPT 模型的高级自然语言处理能力结合在一起。
逻辑分析仪是专门针对数字信号的调试工具,可长时间采集,无波形死区,支持复杂触发定位以及全面的协议内容解析。
随着城市规模扩大所带来的公共安全问题越来越受到重视。传统城市安全视频监控系统前端摄像机内置计算能力较低,以边缘计算和万物互联技术为基础的新型视频监控系统是未来发展趋势。在移动计算和物联网进步的推动下,数十亿移动和物联网设备连接到互联网,在网络边缘生成数以亿计的数据字节。计算负载高、带宽需求大、延迟要求严等特点使得实时视频流分析难以通过传统的云计算范式进行部署。
波多小队长来到二手家电市场,淘了一个800瓦的微波炉,拆除了微波炉的门,装在车上,对着展馆入口人脸识别机附近,然后连上了车载逆变器,拧开电源。
近日,江苏卫视《最强大脑》第四季人机大战第三场已经结束。从未失算的“水哥”王昱珩,在图像识别方面与搭载百度大脑的小度机器人进行实力交锋。最终,“小度”以2:0的战绩战胜对手,并以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格。 本场竞赛题目为 “核桃计划”:通过三段在夜幕下分别从行车记录仪、高位摄像头和女生手机中拍到的模糊动态影像中,让“小度“和水哥识别三位“嫌疑人”的特征后,从30位性别相同、身高体重年龄均相似的候选人现场拍照中,准确找出三位“嫌疑人”。 比赛虽已结束,但对于相关人工智能识别技术的
在进入正文之前,我们先想象一个场景:如果对象 A(正文中的 Jesse)在航空系统的禁飞名单中,因而无法通过机场的护照人脸识别系统,也从未提交过护照照片。那么有没有办法帮助 Jesse 顺利地通过护照人脸识别系统呢?
随着人脸识别为代表的“看脸”技术已经逐渐走向成熟,越来越多的科学家正在攻克这个难题。利用AI算法,捕捉面部特征所承载的多维信息,分析推断一个人精神状况,从人工智能的角度就变成了输入表情,输出性格、情绪、心理活动的“函数”映射问题。其中输入的特征可以是微表情,也可以是视线等;输出结果可以是喜怒哀乐等情绪。
在人工智能领域大规模并行计算是一个刚性的需求,CPU由于本身设计更偏重于多任务处理、逻辑控制所以不太适合在矩阵计算这种需要高并行的场景中应用,这也给了像Nvidia、Xilinx等芯片公司在深度学习时代的爆发的机会。
近些年,AI发展势头有目共睹。作为“下一个十年”最核心的科技手段之一,已然是行业共识和大势所趋,当下也正在加速渗透到千行百业与大众生活中。
昨天IFAA联盟发布“本地人脸识别安全解决方案”,用来实现金融级别现金支付的技术,“像iPhone X那样去人脸支付吧!安卓终于再一次追平了苹果”,并总结出“攻克了几乎是行业性的四大难题”:
当今的无线信号环境比以往任何时候都要复杂。 面对迅速的创新,新的无线信号标准以及不断增长的频率和带宽要求,研究人员必须找到新的方法来检测RF干扰,分类信号类型,测试传播模型并确保在各种环境中的覆盖范围。 他们需要一种经济高效,通用且可联网的替代方案,以替代传统的基于硬件的频谱分析设备。 为了在真实条件下进行实验并验证仿真或模型,这些频谱分析解决方案必须能够在实验室和现场中部署,并与通用实验室软件和处理工具集成在一起,以进行更深入的信号分析。
目前主流的六种生物识别技术:指纹识别、人脸识别、掌纹识别、虹膜识别、声纹识别和静脉识别。还有更多的生物识别技术如耳膜、步态、笔迹、击键动态等等正在被研究和应用落地。
Entering-the-New-Age-Through-Touchless-Access-Control-2-1536x944-1.jpg
共计2164字|建议阅读时间6分钟 编者按 北京时间9月13日凌晨,苹果新品发布会再一次汇聚了世界的目光,苹果也不负众望,推出了两款全新的主力机型iPhone8和iPhone X。其中iPhone X很多新功能都创新性十足,但同时也引起了极大的争议。事后围绕值不值得买这个话题,也是众说纷纭,我目测来看,现在的舆论导向是偏向于不买,并列出了几大“罪状”。其中的大多数比较主观,仁者见仁,智者见智,倒没什么好争论的。不过其中一项罪状确实是引起了我的兴趣:那就是对新的FaceID功能的安全性的质疑。质疑的理由大多都
Signal Tap II(STP)逻辑分析仪是Altera提供的FPGA内置的逻辑分析仪,可以监控一定范围内的FPGA内部信号。该逻辑分析仪随着RTL代码被写入FPGA中,在quartus继承的软件中可以查看信号变化情况,该逻辑分析仪应用于以下场景:
3D人脸识别的市场正在逐渐打开,相较于当前的2D识别,这种主动式,不易受光线影响的识别方式,也涌入了不少新入局者。
今年 11 月,来自纽约大学的研究人员提出了一种可以生成「万能指纹」的神经网络模型 MasterPrints,攻击手机指纹解锁的成功率最高可达 78%。而最近,福布斯的记者们决定使用 3D 打印技术攻击手机的人脸识别功能,在一通测试之后,他们发现石膏「人脸」竟可以破解四种流行旗舰手机的 AI 人脸识别解锁功能,而 iPhone X 不为所动。
如今,一部手机就可以解决支付问题,因此有越来越多的人出门不带钱包了。从密码付款到扫码付款,再到指纹付款。但是苹果在近日的新品发布会上展示的Face ID,使刷脸付款成为了热点话题。 但是大家有没有想过,如果你在超市购物付款的时候,既没有带钱包也没有带手机怎么办?近期,英国的一家超市就可以实现用户动动手指完成付款了! 英国超市在全球首先实现通过静脉付款 据央视新闻报道,日前,英国伦敦布鲁内尔大学内的一家商店开始提供指静脉识别付款。说得简单一点,就是再对手指进行了相关设置之后,就能够动动手指轻松完成付款
首先,AM-AM和AM-PM失真的定义被作了详细的说明。接着文中谈到了使用矢量网络分析仪测量放大器失真的具体步骤。
生物识别技术,通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性(如指纹、脸象、虹膜等)和行为特征(如笔迹、声音、步态等)来进行个人身份的鉴定。
烟气是气体和烟尘的混合物,也是污染居民区大气的主要原因,被人体吸入,烟尘中的飘尘会损害身体健康。
EasyCVR视频融合平台基于云边端协同,可支持海量视频的轻量化接入与汇聚管理。平台兼容性强、拓展度高,可提供视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联等功能。为了便于用户二次开发、调用与集成,我们也提供了丰富的API接口供用户使用。
导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。
在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。
本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有系统性学习的机会。
内容一览:本期整理了 HyperAI超神经官网近期更新的 9 个数据集,涉及人脸识别、姿态估计、自动驾驶三个领域。
2017年,人工智能技术取得了显著的发展。机器人、芯片、VR、人脸识别、自动驾驶、机器学习、车联网和智能音箱成为2017年人工智能领域的十大热门技术。这些技术有望在未来几年内实现广泛应用。
5 分钟内将 Raspberry Pi Pico(或任何 RP2040 板)变成简单的逻辑分析仪。
领取专属 10元无门槛券
手把手带您无忧上云