首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    知识图谱和可解释性深度学习的发展深度学习问题知识图谱为可解释提供依据利用知识图谱对可解释性应用知识图谱在可解释性上的困难

    深度学习的发展 这些年深度学习突飞猛进,各种深度学习模型层出不穷,各种网络结构纷纷登场。 可实际上它发展的本质是由大数据喂出来的,使得机器在图像、语音识别等感知能力方面甚至超越人类。 在深度学习的推动下,自然语言处理方面也取得了显著进展。 深度学习问题 深度学习的一个广为诟病的问题是其不透明性,不可解释性。深度学习模型是一种端到端的学习,接受大样本作为训练输入,所习得的模型本质上是神经网络结构的参数。 其预测过程,是相应参数下的计算过程。 深度学习的学习和预测过程是不透明的,模型究竟学到了什么有效特征,使得

    04
    领券