首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从ojalgo获得一个良好的次优解决方案进行线性优化

线性优化是一种数学优化方法,用于解决线性约束条件下的最优化问题。它在许多领域中都有广泛的应用,如供应链管理、资源分配、生产计划等。

ojalgo是一个开源的Java数学库,提供了丰富的数学函数和算法,包括线性优化算法。通过使用ojalgo,我们可以获得一个良好的次优解决方案来解决线性优化问题。

线性优化问题可以通过定义目标函数和约束条件来描述。目标函数是需要最小化或最大化的线性函数,约束条件是一组线性等式或不等式。ojalgo提供了一些常用的线性优化算法,如单纯形法、内点法等,可以帮助我们求解线性优化问题。

在实际应用中,线性优化可以用于优化资源分配、最大化利润、最小化成本等问题。例如,在供应链管理中,线性优化可以帮助我们确定最佳的生产计划和物流配送方案,以最大化利润或最小化成本。

对于线性优化问题,腾讯云提供了一些相关的产品和服务,如腾讯云数学优化服务。该服务基于腾讯云强大的计算和存储能力,提供了高效的线性优化算法和工具,可以帮助用户快速解决线性优化问题。您可以通过访问腾讯云数学优化服务的官方网站(https://cloud.tencent.com/product/oms)了解更多信息和产品介绍。

总结:ojalgo是一个开源的Java数学库,可以用于求解线性优化问题。线性优化在供应链管理、资源分配、生产计划等领域有广泛应用。腾讯云提供了数学优化服务,可以帮助用户解决线性优化问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

普林斯顿研究“最小值”:平方和的破局,二次和三次优化问题的极限

多目标优化是各个领域中普遍存在的问题,每个目标不可能都同时达到最优,并且有现实应用的时效。各个因素必须各有权重。在困局中,平方和方法可用来寻找局部最优解。 编译 | 吴彤 编辑 | 维克多 生命是一连串的优化问题,下班后寻找回家的最快路线;去商店的路上权衡最佳性价比,甚至当睡前“玩手机”的安排,都可以看做优化问题。 优化问题的同义词是找到解决方案,有无数学者想探求在最短时间内,找到最好的解。但最新研究指出,一些二次优化问题,例如变量对可以相互作用的公式,只能“按部就班”找到局部最优解。换句话说“不存在快速计

01
  • ACOUSLIC-AI2024——腹围超声自动测量

    在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

    01

    什么是 CI/CD 可观察性,我们如何为更多可观察的管道铺平道路?

    在这篇文章中,作者介绍了CI/CD可观测性的概念和重要性。通过使用可观测性,团队可以提前解决问题,做出更明智的决策,并增加对软件发布的信心。文章还提到了CI/CD系统中常见的问题,包括不稳定性、性能回归和配置错误。为了解决这些问题,作者介绍了GraCIe,这是一个基于Grafana构建的应用插件,旨在提供对CI/CD系统的易于理解的方式。GraCIe利用Grafana Tempo、Grafana Loki和Prometheus的功能,通过使用OpenTelemetry,可以与几乎任何CI/CD平台无缝集成,为用户提供无与伦比的洞察力。作者还展望了未来,希望CI/CD供应商能够朝着一个共同的标准发展,实现遥测数据的普遍可访问性。

    01

    每日论文速递 | 语言模型的最优学习

    摘要:这项工作研究了改善语言模型(LM)学习的一般原则,旨在减少必要的训练步骤,以实现卓越的性能。具体来说,我们提出了一个理论的LM的最佳学习。我们首先提出了一个目标,通过最大限度地提高数据压缩比,在“LM训练无损压缩”视图中优化LM学习。然后,我们推导出一个定理,命名为学习律,以揭示在我们的目标下的最优学习过程中的动力学性质。然后通过线性分类和真实世界语言建模任务的实验验证了该定理。最后,我们的经验验证,最佳学习的LM本质上源于改进的系数的缩放律的LM,表明很大的承诺和意义,设计实用的学习加速方法。我们的代码可以在https://aka.ms/LearningLaw上找到。

    01

    ACOUSLIC-AI2024——腹围超声自动测量验证集结果

    在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

    01

    用深度学习解决旅行推销员问题,研究者走到哪一步了?

    来源:机器之心本文约2600字,建议阅读9分钟本文分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究。 最近,针对旅行推销员等组合优化问题开发神经网络驱动的求解器引起了学术界的极大兴趣。这篇博文介绍了一个神经组合优化步骤,将几个最近提出的模型架构和学习范式统一到一个框架中。透过这一系列步骤,作者分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究,以创造实际的价值。 组合优化问题的背景 组合优化是数学和计算机科学交叉领域的一个实用领域,旨在解决 NP 难的约束优化

    01
    领券