首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Spark structured streaming仅保留最新数据

Spark structured streaming是一种基于Spark的流式处理框架,它可以实时处理和分析数据流。使用Spark structured streaming可以实现对数据流的实时处理和转换,同时保留最新的数据。

在使用Spark structured streaming时,可以通过以下步骤来仅保留最新数据:

  1. 创建一个SparkSession对象,并设置相关的配置参数。
代码语言:txt
复制
import org.apache.spark.sql.SparkSession

val spark = SparkSession
  .builder
  .appName("StructuredStreamingExample")
  .master("local[*]")
  .getOrCreate()
  1. 读取数据流,可以从各种数据源读取数据,如Kafka、文件系统等。
代码语言:txt
复制
val inputData = spark
  .readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "localhost:9092")
  .option("subscribe", "topic_name")
  .load()
  1. 对数据流进行处理和转换,可以使用Spark SQL的API进行数据处理。
代码语言:txt
复制
import org.apache.spark.sql.functions._

val processedData = inputData
  .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .groupBy("key")
  .agg(max("value") as "latest_value")
  1. 将处理后的数据流写入目标位置,可以是文件系统、数据库等。
代码语言:txt
复制
val query = processedData
  .writeStream
  .outputMode("update")
  .format("console")
  .start()

query.awaitTermination()

在上述代码中,我们使用Spark structured streaming从Kafka读取数据流,并对数据流进行处理,通过groupBy和agg操作保留每个key对应的最新数据。最后,将处理后的数据流输出到控制台。

推荐的腾讯云相关产品:腾讯云数据流计算TDSQL、腾讯云消息队列CMQ、腾讯云流计算Oceanus等。

腾讯云数据流计算TDSQL:https://cloud.tencent.com/product/tdsql

腾讯云消息队列CMQ:https://cloud.tencent.com/product/cmq

腾讯云流计算Oceanus:https://cloud.tencent.com/product/oceanus

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Structured Streaming | Apache Spark中处理实时数据的声明式API

    随着实时数据的日渐普及,企业需要流式计算系统满足可扩展、易用以及易整合进业务系统。Structured Streaming是一个高度抽象的API基于Spark Streaming的经验。Structured Streaming在两点上不同于其他的Streaming API比如Google DataFlow。 第一,不同于要求用户构造物理执行计划的API,Structured Streaming是一个基于静态关系查询(使用SQL或DataFrames表示)的完全自动递增的声明性API。 第二,Structured Streaming旨在支持端到端实时的应用,将流处理与批处理以及交互式分析结合起来。 我们发现,在实践中这种结合通常是关键的挑战。Structured Streaming的性能是Apache Flink的2倍,是Apacha Kafka 的90倍,这源于它使用的是Spark SQL的代码生成引擎。它也提供了丰富的操作特性,如回滚、代码更新、混合流\批处理执行。 我们通过实际数据库上百个生产部署的案例来描述系统的设计和使用,其中最大的每个月处理超过1PB的数据。

    02

    是时候放弃 Spark Streaming, 转向 Structured Streaming 了

    正如在之前的那篇文章中 Spark Streaming 设计原理 中说到 Spark 团队之后对 Spark Streaming 的维护可能越来越少,Spark 2.4 版本的 [Release Note](http://spark.apache.org/releases/spark-release-2-4-0.html) 里面果然一个 Spark Streaming 相关的 ticket 都没有。相比之下,Structured Streaming 有将近十个 ticket 说明。所以各位同学,是时候舍弃 Spark Streaming 转向 Structured Streaming 了,当然理由并不止于此。我们这篇文章就来分析一下 Spark Streaming 的不足,以及Structured Streaming 的设计初衷和思想是怎么样的。文章主要参考今年(2018 年)sigmod 上面的这篇论文:Structured Streaming: A Declarative API for Real-Time

    02
    领券