首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用df.iloc()赋值将返回nan

使用df.iloc()赋值将返回NaN是因为df.iloc()是用于按照位置选择数据的方法,而不是用于赋值的方法。df.iloc()返回的是一个视图,而不是原始数据的副本。因此,对于使用df.iloc()进行赋值操作,会导致原始数据不会被修改,而新赋的值将会被视为NaN。

如果想要赋值操作生效,可以使用df.loc()方法。df.loc()是基于标签进行选择和赋值的方法。通过指定行和列的标签,可以对指定位置进行赋值操作。

以下是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建一个DataFrame
data = {'A': [1, 2, 3],
        'B': [4, 5, 6],
        'C': [7, 8, 9]}
df = pd.DataFrame(data)

# 使用df.loc()进行赋值操作
df.loc[0, 'A'] = 10

print(df)

输出结果为:

代码语言:txt
复制
    A  B  C
0  10  4  7
1   2  5  8
2   3  6  9

在这个例子中,我们使用df.loc[0, 'A'] = 10将第一行第一列的值赋为10。可以看到,赋值操作生效,并且原始数据被修改。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 2天学会Pandas

    0.导语1.Series2.DataFrame2.1 DataFrame的简单运用3.pandas选择数据3.1 实战筛选3.2 筛选总结4.Pandas设置值4.1 创建数据4.2 根据位置设置loc和iloc4.3 根据条件设置4.4 按行或列设置4.5 添加Series序列(长度必须对齐)4.6 设定某行某列为特定值4.7 修改一整行数据5.Pandas处理丢失数据5.1 创建含NaN的矩阵5.2 删除掉有NaN的行或列5.3 替换NaN值为0或者其他5.4 是否有缺失数据NaN6.Pandas导入导出6.1 导入数据6.2 导出数据7.Pandas合并操作7.1 Pandas合并concat7.2.Pandas 合并 merge7.2.1 定义资料集并打印出7.2.2 依据key column合并,并打印7.2.3 两列合并7.2.4 Indicator设置合并列名称7.2.5 依据index合并7.2.6 解决overlapping的问题8.Pandas plot出图9.学习来源

    02
    领券