如图,我有两列MAC地址表,然后需要把F列的值取值到D列,可以使用公式:=VLOOKUP(A1,$E$1:$F$44,2,0)进行处理数据。...A1代表以哪一列为基础取值参考,$E$1:$F$44代表查找对比范围。
文章背景: 在表缺少主键无法直接创建关系,或者需要借助复杂的计算才能创建主键的情况下,可以利用计算列来设置关系。在基于计算列创建关系时,循环依赖经常发生。...,这里使用VALUES来检索单个值。...当多端的一个值不存在于一端内时,VALUES返回的结果会把空行包含进来。而如果使用DISTINCT,无论额外的空行是否存在,DISTINCT始终产生相同的结果。...3 避免空行依赖 创建可能用于设置关系的计算列时,都需要注意以下细节: 使用DISTINCT 代替VALUES。 使用ALLNOBLANKROW代替ALL。...假设有一个产品表具有一个唯一密钥值列(如产品密钥)和描述产品特征(包括产品名称、类别、颜色和尺寸)的其他列。当销售表仅存储密钥(如产品密钥)时,该表被视为是规范化的。
如果我们有好几列有内容,而我们希望在新列中将有内容的列的标题显示出来,那么我们怎么做呢? Excel - TEXTJOIN function 1....- - - - 4 - - - 在开始,我们曾经使用INDEX + MATCH的方式,但是没有成功,一直是N/A https://superuser.com/questions/1300246/if-cell-contains-value-then-column-header...所以我们后来改为TEXTJOIN函数,他可以显示值,也可以显示值的标题,还可以多个列有值的时候同时显示。...- - 4 - - - 15 Year 5 - - - - 5 - - - =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),$B$1:$I$1,"")) 如果是想要显示值,...则: =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),B2:I2,"")) 其中,ISNUMBER(B2:I2)是判断值是不是数字,可以根据情况改成是不是空白ISBLANK
air.hole <- c(10,12.5,12.5,12.5,……) #产生向量,将(10,12.5,12.5,12.5,……)中的值赋予到air.hole length(air.hole) ?...b1=aggregate(a1air.hole, list(a1chemical), mean) #aggregate(需要被计算的内容,分类项,计算函数) aggregate(air.hole~chemical...升序排序,若相同,则按照Sepal.Width升序排序 dplyr::arrange(a2, Sepal.Length, desc(Petal.Length)) #对a2数据中Sepal.Length升序排序...);variable.name:为新列变量取名; value.name:对应值所在的变量名 ?..." = "Journal")) #merge 函数类似于 Excel 中的 Vlookup,可以实现对两个数据表进行匹配和拼接的功能;by.x,by.y:指定依据哪些行合并数据框,默认值为相同列名的列
vars <- c("Petal.Length", "Petal.Width")select(test, one_of(vars))#选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用...数据框是一种二维的表格结构,其中包含了多个变量(字段)和观测值(行)。在进行数据分析时,有时我们只对数据框中的特定字段感兴趣,而不需要使用所有的字段。...setosa","versicolor的行#%in%判断前面一个向量内的元素是否在后面一个向量中,返回布尔值。...unique值计数函数计算数据集中列唯一值的数量count(test,Species)## Species n##1 setosa 2##2 versicolor 2##3 virginica...x表所有记录反连接anti_joinanti_join(x = test2, y = test1, by = 'x')#返回无法与y表匹配的x表的所记录简单合并bind_rows()函数需要两个表格列数相同
和dplyr包中的join函数进行数据框的合并,它们数据框合并的原理同样是数据框的合并原理是这样的:首先在A数据框某一指定列的每一行内容在B数据框表的指定列进逐行匹配,直到A中所有行匹配完为止。...这里的数据仍使用merge函数中的两个数据(略有修改):作者信息数据和书籍信息数据。依照下面介绍的合并条件,这两个数据既有相同的内容,又有彼此中不存在的内容。...要求必须有相同列名的列 type为合并方式 inner,行:显示x,y中共有的行; 列:显示x,y中的所有列 left,行:显示x中所有的行; 列:显示x,y中的所有列,未匹配到的值,不论字符数字,全显示为...NA right,行:显示y中所有的行; 列:显示x,y中的所有列,未匹配到的值,不论字符数字,全显示为NA full,先显示x中所有的行在y中的匹配结果,接着显示y中未匹配上的内容 match匹配的规则...join函数: join(x, y, by = , copy = FALSE, ) x,y 为合并的数据框,不要求x,y中排序列唯一 by 为排序依据,默认值Null时按名字相同的量匹配,此时,要求必须有相同列名的列
\ 将多个值减少到单个值summarise(test, mean(Sepal.Length), sd(Sepal.Length)) # 计算Sepal.Length的平均值和标准差summarise(group_by...(test, Species),mean(Sepal.Length), sd(Sepal.Length)) # 先按照Species分组,计算每组Sepal.Length的平均值和标准差dplyr两个实用技能...2:count统计某列的unique值count(test,Species)分类变量每个变量值的频数dplyr处理关系数据将2个表进行连接1.內连inner_join,取交集inner_join(test1..., test2, by = "x")满足两个条件:有相同变量名,相同变量名的列里有相同元素;2.左连left_join列表书写顺序决定了最终合成列表中列的顺序left_join(test1, test2...,每列数值的类型必须相同;以"by"的列为标准,补齐列表,空值为"NA"4.半连接:返回能够与y表匹配的x表所有记录semi_join交集表中test1部分的列semi_join(x = test1,
二、问题探索 使用QGIS打开导出的Tiff文件,形状、位置、投影等信息都正确,甚至大部分数据值都正确,唯一出现问题的地方就是边缘,边缘出现了很多不正常的值。...简单的说就是选周围的四个点,然后做一条水平的线,按照线性求出水平线与四个点组成的四边形的交点的值,然后根据这两个值再计算出该点的值,理论上使用Bilinear也应该会出现边缘问题,但是实际测试并没有出现...但是目前来看我们必须要想一个办法来解决这个问题,下面就是本文重点要讲的——使用缓冲区分析的方式解决投影变换中边缘数据值计算的问题。...五、总结 以上就是通过使用缓冲区分析的方式解决投影变换中边缘数据值计算过程中出现偏差的问题。看似简单的原理与实现过程,其实同样可以上升到哲学的高度去思考。...当然该方法不止能解决重采样造成的问题,凡是涉及到边缘值计算的都可以采用该方法,下一篇文章我将讲解如何使用该方法解决瓦片计算过程中的边缘问题。
1)安装、加载dplyr包、准备数据 install.packages("dplyr") #加载dplyr包 使用dplyr包处理数据前,建议先将数据集转换为tbl对象。...data(iris) #本文使用iris示例数据集。 2)数据记录筛选(行筛选) filter函数:按指定条件筛选符合条件中逻辑判断要求的数据记录。...Width) #计算一个或多个新列并删除原列 6)数据汇总 summarize()函数实现数据集聚合操作,将多个值汇总成一个值 summarise(iris,avg = mean(Sepal.Length...Min ;Max Mean ;Median ;Var ;Sd等 summarise(iris, max(Petal.Width), first(Sepal.Width)) #返回数据框中变量的最大值及第一四分位值...注意:bind_rows()函数需要两个合并对象有相同的列数,而bind_cols()函数则需要两个合并对象有相同的行数。
*Sepal.Width)要修改的数据框的名称将创建的新变量的名称将分配给新变量的值select()按列筛选select(test,1)#筛选test中的第一列select(test,c(1,5))#筛选...test中的第一列和第五列select(test,Sepal.Length)#筛选test中名为Sepal.Length的一列按列名筛选select(test, Petal.Length, Petal.Width...)选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of函数vars % group_by(Species) %>% summarise(mean(Sepal.Length), sd(Sepal.Length))count统计某列的unique值count(test..., by = 'x')简单合并bind_rows()函数需要两个表格列数相同bind_cols()函数则需要两个数据框有相同的行图片
%>% #对象 group_by(Species) %>% #分组 summarise(mean(Sepal.Length), sd(Sepal.Length))#计算#count统计某列的唯一值...count(test,Species)5.dplyr处理关系数据#将2个表进行连接内连接:一个新数据框,其中包含键、 x 值和 y 值。...我们使用 by 参数告诉 dplyr 哪个变量是键:x <- tribble( ~key, ~val_x, 1, "x1", 2, "x2", 3, "x3")y <- tribble( ~...:保留 y 中的所有观测right_join(x, y, by = "key")#全连接:保留 x 和 y 中的所有观测。...表匹配的x表的所记录anti_joinanti_join(x =x, y =y, by = 'key')#简单合并:bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
❝在近期使用 「dplyr」 进行多列选择性操作,如 mutate_at() 时,发现文档提示一系列的 「dplyr」 函数变体已经过期,看来后续要退休了,使用 across() 是它们的统一替代品,所以最近抽时间针对性的学习和翻译下...原文来自 [dplyr 文档](Column-wise operations • dplyr (tidyverse.org "dplyr 文档")) - 2021-01❞ 同时对数据框的多列执行相同的函数操作经常有用..._if, _at, _all 「dplyr」 以前的版本允许以不同的方式将函数应用到多个列:使用带有_if、_at和_all后缀的函数。这些功能解决了迫切的需求而被许多人使用,但现在被取代了。..._at() 函数是 「dplyr」 中唯一你需要手动引用变量名的地方,这让它们比较奇怪且难以记忆。 为什么过了这么久才发现 across()?...我们可以使用没有外部名称作为将数据框列解包为单独列的约定。 你如何转移已经存在的代码?
dplyr包有很多函数,为了防止dplyr包中的函数名与其他函数产生冲突,使用时前面加上“包名::”dplyr五个基础函数mutate(),新增列select(),按列筛选按列号筛选注意筛选内容与表格内容的统一...sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差eg:先按照Species分组,计算每组Sepal.Length的平均值和标准差group_by(test, Species...+ shift + M)同时执行三件事(加载任意一个tidyverse包即可用管道符号)count统计某列的unique值dplyr处理关系数据即将2个表进行连接內连inner_join,取交集左连left_join...注意返回的表的不同反连接:返回无法与y表匹配的x表的所记录anti_join注意返回的表的不同简单合并在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同...,而bind_cols()函数则需要两个数据框有相同的行数函数和R包的学习方式快速查看函数帮助文档?
-(2)列表使用不方便——simplify = T简化结果,简化成矩阵 -(3)注意:之前提到过,矩阵的某一列不能单独转换数据类型,需要把矩阵转换成数据框再转换某列的数据类型;或者把这列单独提取出来再转换其数据类型...转换数据:把表格转换成两列数据 -(1) 第一步:转置 -(2) 第二步:把行名作为一列添加到数据中(因为ggplot2容易把行名丢掉,所以倾向于把行名作为一列) -(3) 第三步:新增一列“group...",1:3) colnames(exp) = paste0("test",1:6) exp[,1:3] = exp[,1:3]+1 #给exp的1-3列加一 exp 关于set.seed():可以把它理解为给生成的随机数序列一个编号...如何挑出30个数里最大的五个 -(1)排序 -(2)取最后五个 图片 3.向量/列表的隐式循环-lapply() 对列表/向量中的每个元素实施相同的操作 lapply(1:4,rnorm) #批量画图...,但顺序不同;对比之后发现我的是按排序前原本的先后顺序列出的(因为要一个一个检查是否是最大/最小的前十个);如果先arrange一下再%in%就可以跟老师的顺序一样了。
dplyr是一个在R语言中非常流行的数据处理包,它提供了许多功能强大且易于使用的函数,包括 select、 filter、mutate、arrange和summarize 等。...这些功能使得dplyr成为数据清洗、处理和分析的首选包。...(dplyr) 二、首先创建示例数据框 仍直接使用内置数据集iris,并简化 test <- iris[c(1:2,51:52,101:102),] 三、dplyr基础函数 1、filter()筛选行...), sd(Sepal.Length)) # 计算Sepal.Length的平均值和标准差 # 先按照Species分组,计算每组Sepal.Length的平均值和标准差 group_by(test,...= test2, y = test1, by = 'x') (6)简单合并 在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols
目录 第二章(pandas) Python从零开始第三章数据处理与分析python中的dplyr(1) Python从零开始第三章数据处理与分析python中的dplyr(2) Python从零开始第三章数据处理与分析...python中的dplyr(3) Python从零开始第三章数据处理与分析python中的dplyr(4) Python从零开始第三章数据处理与分析python中的dplyr(5) ==========...===================================== summarize()函数 summarize可以接受任意数量的关键字参数,这些参数将返回标有键的新列,这些键是原始DataFrame...中列的汇总函数。...summarize_each()函数 summarize_each(function_list, *columns)更常用,它可以比较方便的计算数据框中的列的一些属性。
Day6-2023.12.02学习R包-dplyr是R中用来进行数据操作的一个包,提供了一些功能强大,易于使用的函数,这些函数对于数据探索分析和数据操作而言非常实用,dplyr主要用于数据清理,包括重命名...")或者 BiocManager::install(“包”)安装包library(dplyr) 加载包 library函数是加载和使用R语言中的函数库和扩展包二、dplyr的五个基础函数mutate(...), sd(Sepal.Length))计算每组Sepal.Length的平均值和标准差三、dpylr的两个实用技能管道操作符:管道符 %>% ,符号左侧表示数据的输入,右侧表示下游数据处理环节count...统计某列的unique值四、dplyr处理关系数据(即将2个表进行连接)1.內连inner_join,取交集 inner_join(test1, test2, by = "x")2.左连left_join...y = test1, by = 'x')6.简单合并bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数感觉今天的学习内容是要背下来的那种,生日快乐小焦加油努力向前冲
此处以GSVA方法进行示例: library(parallel) library(doParallel) library(foreach) #并行计算所使用的R包 library(tibble)...p值列表(总共进行2000次) GSVA_adjust(exprSet) } # 每一次循环都会产生一个列向量(基因集数量*1),通过foreach中的cbind参数将2000个列向量拼接在一起...值分布数据之后,进行偏性的评估。...^3) } # SkewValue可能会有NA的情况,对于这种情况,人工设置为0.5(当该基因集的所有p值相同时) Prefer00.1)) #计算偏向0的数量 Prefer1<-length(which(SkewValue< -0.1)) #计算偏向1的数量 PreferNeither<- length(which(
今天的任务是学习R包。以dplyr包的安装加载和使用为例进行学习,因为R包之间的使用是相通的,掌握了一个,后面的可以通过具体代码的学习进行使用。...(Sepal.Length)) #计算每组Sepal.Length的平均值和标准差三、dplyr两个实用技能3.1管道操作 %>% (cmd/ctr + shift + M)加载tidyverse包后才可用...3.2count统计某列的unique值count(test,Species)四、dplyr处理关系数据首先先手动输入两个test的表格test1 <- data.frame(x = c('b','e'.../2与上面操作中的就不同了bind_rows(test1, test2) #需要两个表格列数相同bind_cols(test1, test3) #需要两个数据框有相同的行数写在最后,今天成功手动安装了RStutio...的镜像设置,练习了dplyr的使用。
学习R包R包是多个函数的集合,具有详细的说明和示例,学习生信R语言必学的原因是丰富的图表和biocductor的各种生信分析R包,包的使用是一通百通的,以dplyr为例,讲解一下R包一、安装和加载R包1...使用一个包,是需要先安装再加载,才能使用包里的函数。...")library(dplyr)示例数据直接使用内置数据集iris的简化版:test <- iris[c(1:2,51:52,101:102),]二、dplyr五个基础函数1.mutate(),新增列mutate...), sd(Sepal.Length))(加载任意一个tidyverse包即可用管道符号)2.count统计某列的unique值count(test,Species)四、dplyr处理关系数据将2个表进行连接...表的所记录anti_join6.简单合并在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
领取专属 10元无门槛券
手把手带您无忧上云