首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用opencv python进行全景图像拼接

OpenCV 是一个开源的计算机视觉库,可以用于处理图像和视频

代码语言:javascript
复制
pip install opencv-python

以下是使用 OpenCV 和 Python 进行全景图像拼接的步骤:

  1. 导入所需的库:
代码语言:javascript
复制
import cv2
import numpy as np
  1. 读取要拼接的图像:
代码语言:javascript
复制
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
  1. 检测图像的关键点和描述符:
代码语言:javascript
复制
sift = cv2.SIFT_create()

kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
  1. 使用 FLANN 匹配器匹配关键点:
代码语言:javascript
复制
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)

flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
  1. 应用比率测试筛选好的匹配:
代码语言:javascript
复制
good_matches = []
for m, n in matches:
    if m.distance < 0.7 * n.distance:
        good_matches.append(m)
  1. 计算单应性矩阵(Homography Matrix):
代码语言:javascript
复制
if len(good_matches) > 4:
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 2)

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
else:
    print("Not enough matches are found - {}/{}".format(len(good_matches), 4))
    M = None
  1. 使用单应性矩阵将图像进行拼接:
代码语言:javascript
复制
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]

pts1 = np.float32([[0, 0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)
pts2 = np.float32([[0, 0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)

dst_pts1 = cv2.perspectiveTransform(pts1, M)
dst_pts2 = cv2.perspectiveTransform(pts2, M)

dst_pts = np.concatenate((dst_pts1, dst_pts2), axis=0)
[xmin, ymin] = np.int32(dst_pts.min(axis=0).ravel() - 0.5)
[xmax, ymax] = np.int32(dst_pts.max(axis=0).ravel() + 0.5)

t = [-xmin, -ymin]
Ht = np.array([[1, 0, t[0]], [0, 1, t[1]], [0, 0, 1]])

result = cv2.warpPerspective(img2, Ht.dot(M), (xmax-xmin, ymax-ymin))
result[t[1]:h1+t[1], t[0]:w1+t[0]] = img1
  1. 显示拼接后的全景图像:
代码语言:javascript
复制
cv2.imshow('Panorama', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

领券